Steady Mass Flow

- The rate at which mass enters a given volume equals the rate at which mass leaves the same volume.

\[P_1 A_1 V_1 = P_2 A_2 V_2 = m' \]

Where:
- \(P_1, P_2 \) = densities of the two streams.
- \(A_1 \) = area of entrance
- \(A_2 \) = area of exit
- \(V_1 \) = velocity of entering stream
- \(V_2 \) = velocity of leaving stream

The resultant forces of all external forces:

\[\Sigma F = \dot{G} \]

Since \(\Delta G = (\Delta m)V_1 - (\Delta m)V_1 = \Delta m (V_2 - V_1) = \Delta m (\frac{dV}{dt}) \)

\[m' = \lim_{\Delta t \to 0} \frac{\Delta m}{\Delta t} = \frac{dm}{dt} \]
Therefore, \[\Sigma F = \dot{G} = \lim_{\Delta t \to 0} \frac{\Delta G}{\Delta t} = m' \Delta V \]

Moment & Momentum

\[\Sigma M_0 = m' (d_2 \times V_2 - d_1 \times V_1) \]

where \(d_1 \) = position vector to the center of \(A_1 \)
\(d_2 \) = position vector to the center of \(A_2 \)

\[\Sigma M_0 = \dot{H}_0 \quad \text{or} \quad \Sigma M_q = \dot{H}_q \]