
CHAPTER 5

Permutation Groups

Definition (Permutation of A, Permutation Group of A). A permutation
of a set A is a function from A to A that is both 1–1 and onto.

A permutation group of a set A is a set of permutations of A that forms a group
under function composition.

Note. We focus on the case where A is finite. We usually take A =
{1, 2, . . . , n} for some n 2 N.

Notation. We usually define a permutation explicitly rather than by rule:

For A = {1, 2, 3, 4, 5}, define a permutation ↵ by

↵(1) = 3, ↵(2) = 2, ↵(3) = 5, ↵(4) = 1, ↵(5) = 4,

or as

↵ =


1 2 3 4 5
3 2 5 1 4

�
domain
range

.

Suppose

� =


1 2 3 4 5
5 3 2 1 4

�
.

Then

�↵ =

"
1 2

 �
3 4 5

5 3 2 1 4

#"
1 2 3 4 5
3 � 2 5 1 4

#

applies permutations from right to left, so

�↵ =


1 2 3 4 5
2 3 4 5 1

�
and ↵� =


1 2 3 4 5
3 2 5 1 4

� 
1 2 3 4 5
5 3 2 1 4

�
=


1 2 3 4 5
4 5 2 3 1

�
.

We notice that this multiplication (composition) is not commutative.
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Example. Symmetric Group S3 — all permutations on {1, 2, 3}.

" =


1 2 3
1 2 3

�
, the identity, ↵ =


1 2 3
2 3 1

�
, ↵2 =


3 1 2,
1 2 3

�

� =


1 2 3
1 3 2

�
(note ↵3 = �2 = "), ↵� =


1 2 3
2 1 3

�
, ↵2� =


1 2 3
3 2 1

�
.

This is the entire group since there are 3! = 3 · 2 · 1 = 6 ways to define a 1–1
and onto function on {1, 2, 3}, three possibilities for 1, two for 2, and one for
3. Note

�↵ =


1 2 3
1 3 2

� 
1 2 3
2 3 1

�
=


1 2 3
3 2 1

�
= ↵2� 6= ↵�,

so S3 is not commutative. Also, using �↵ = ↵2� (called a relation),

�↵2 = (�↵)↵ = (↵2�)↵ = ↵2(�↵) = ↵2(↵2�) = ↵4� = ↵�.

Example. Symmetric Group Sn — all permutations on A = {1, 2, . . . , n},
also known as the symmtric group of degree n.

For ↵ 2 Sn, ↵ =


1 2 · · · n

↵(1) ↵(2) · · · ↵(n)

�
and |Sn| = n!.

For n � 3, Sn is non-Abelian.
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Example. Symmetries of a Square. Consider the square with number ver-
tices:

Then, in D4, R90 =


1 2 3 4
2 3 4 1

�
= ⇢ and H =


1 2 3 4
2 1 4 3

�
= � generate D4.

⇢2 =


1 2 3 4
3 4 1 2

�
= R180, ⇢3 =


1 2 3 4
4 1 2 3

�
= R270,

⇢4 =


1 2 3 4
1 2 3 4

�
= R0, ⇢� =


1 2 3 4
3 2 1 4

�
= D0,

⇢2� =


1 2 3 4
4 3 2 1

�
= V, ⇢3� =


1 2 3 4
1 4 3 2

�
= D.

Thus D4  S4.

Cycle Notation

Consider ↵ =


1 2 3 4 5 6
3 5 1 4 6 2

�
. View schematically as follows.

Or write as ↵ = (1 3)(2 5 6)(4) — these can be written in any order.

(a1 a2 · · · an) is a cycle of length n or an n-cycle (use commas between integers
if n � 10).
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One can consider a cycle as fixing any element not apperaring in it. Thus, in

S6, � = (1 3) =


1 2 3 4 5 6
3 2 1 4 5 6

�
and � = (2 5 6) =


1 2 3 4 5 6
1 5 3 4 6 2

�
can be

multiplied to give

↵ = �� = �� = (1 3)(2 5 6) = (2 5 6)(1 3).

Note the 4, which is fixed, no longer appears, and the multiplication is commu-
tative since the cycles are disjoint.

Example. In S8, let ↵ = (1 3 8 2)(4 7)(5 6) and � = (2 8 3)(4 7 6). Then

↵� = (1 3 8 2)(4 7)(5 6)(2 8 3)(4 7 6) = (1 3)(5 6 7) and

�↵ = (2 8 3)(4 7 6)(1 3 8 2)(4 7)(5 6) = (1 2)(4 5 6). Note ↵� 6= �↵.

Example. In S8, let ↵ = (1 4)(2 6 3)(5 8 7) and � = (1 8)(2 6)(3 5)(4 7).
Then ↵� = (1 7)(2 3 8 4 5) and �↵ = (1 7 3 6 5)(4 8).

Theorem (5.1 — Products of Disjoint Cycles). Every permutation of a
finite set can be written as a cycle or a product of disjoint cycles.

Proof. Let ↵ be a permutation on A={1,2,. . . ,n}. Choose any a1 2 A.
Let a2 = ↵(a1), a3 = ↵(↵(a1)) = ↵2(a1), etc., until a1 = ↵m(a1) for some
m. This repetition of a1 is guaranteed with m  n since A is finite. Thus
(a1 a2 · · · am) is a cycle of ↵.

If m < n, choose any element b1 2 A where b1 is not in the first cycle, and let
b2 = ↵(b1), b3 = ↵(↵(b1)) = ↵2(b1), until b1 = ↵k(b1) for some k  n. We now
have a second cycle (b1 b2 · · · bk) of ↵.

If ↵i(a1) = ↵j(b1) for some i and j, then ↵i�j(a1) = b1 =) b1 2 (a1 a2 · · · am),
contradicting how b1 was chosen.

If m + k < n, we continue as above until there are no elements left. Thus

↵ = (a1 a2 · · · am)(b1 b2 · · · bk) · · · (c1 c2 · · · cs).

⇤
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Theorem (5.2 — Disjoint Cycles Commute).

If the pair of cycles ↵ = (a1 a2 · · · am) and � = (b1 b2 · · · bn) have no
entries in common, then ↵� = �↵.

Proof.

Suppose ↵ and � are permutations of

S = {a1, a2, . . . , am, b1, b2, . . . , bn, c1, c2, . . . , ck}
where the c’s are left fixed by both ↵ and �.

[To show ↵�(x) = �↵(x)8x 2 S.]

If x = ai for some i, since � fixes all a elements,

(↵�)(ai) = ↵(�(ai)) = ↵(ai) = ai+1 (with am+1 = a1) and

(�↵)(ai) = �(↵(ai)) = �(ai+1) = ai+1,

so ↵� = �↵ on the a elements.

A similar argument shows ↵� = �↵ on the b elements.

Since ↵ and � both fix the c elements,

(↵�)(ci) = ↵(�(ci)) = ↵(ci) = ci and

(�↵)(ci) = �(↵(ci)) = �(ci) = ci.

Thus ↵�(x) = �↵(x)8x 2 S. ⇤
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Question: Is there an easy way to compute the order of a permutation?

Theorem (5.3 — Order of a Permutation). The order of a permutation
of a finite set written in disjoint cycle form is the least common multiple
of the lengths of the cycles.

Proof.

Suppose ↵ is a permutation of a finite set S, ↵ = ↵1↵2 · · ·↵r where

{↵1,↵2, . . . ,↵r} are disjoint cycles of S. Since disjoint cycles commute,

↵m = ↵m
1 ↵m

2 · · ·↵m
r for all m 2 Z. Now ↵m = (1) (the identity) ()

↵m
i = (1) 8 i = 1, . . . , r. For if ↵i(x) 6= x, ↵j(x) = x 8 j 6= i (our cycles are

disjoint), so ↵m
i (x) = x.

Since an n-cycle clearly has order n, by Corollary 2 of Theorem 4., |↵i|
��|↵| for

i = 1 . . . r. Therefore, lcm(|a1|, . . . , |ar|)
��|↵|. But m = lcm(|a1|, . . . , |ar|) is

the least m such that ↵i = (1) for i = 1, . . . , r, so |↵| = lcm(|a1|, . . . , |ar|). ⇤

Theorem (5.4 — Product of 2-Cycles). Every permutation in Sn, n > 1,
is a product of 2-cycles (also called transpositions).

Proof.

(1) = (1 2)(2 1), so (1) is a product of 2-cycles.

By Theorem 5.1, for ↵ 2 Sn,

↵ = (a1 a2 · · · ak)(b1 b2 · · · bt) · · · (c1 c2 · · · cs).

Then

↵ = (a1 ak)(a1 ak�1) · · · (a1 a2)(b1 bt)(b1 bt�1) · · · (b1 b2) · · ·
(c1 cs)(c1 cs�1) · · · (c1 c2).

⇤
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Example.

(3 6 8 2 4) = (3 4)(3 2)(3 8)(3 6)

(1 3 7 2)(4 8 6) = (1 2)(1 7)(1 3)(4 6)(4 8)

Lemma. If " = �1�2 . . .�r where the �’s are 2-cycles, then r is even.

Proof.

r 6= 1, since " is not a 2-cycle. If r = 2, we are done. Suppose r > 2 and that
if " = �1�2 · · ·�s with s < r, then s is even.

Suppose the rightmost 2-cycle is (a b). Since (i j) = (j i), the product �r�1�r

can be expressed in one of the following forms shown on the right (these are 4
possibilities for �r�1 if �r = (a b)):

" = (a b)(a b)

(a b)(b c) = (a c)(a b)

(a c)(c b) = (b c)(a b)

(a b)(c d) = (c d)(a b)

In the first case, we may delete �r�1�r from the original product, leaving " =
�1 · · ·�r�2, so r � 2 is even by the second principle of math induction.

In the other 3 cases, We replace �r�1�r by the products on the left, retaining
the identity but moving the rightmost occurance of a into �r�1.

Repeat the above procedure with �r�2�r�1. We either obtain " = �1 · · ·�r�2�r,
implying r is even by the second principle of math induction, or obtain a new
product of r 2-cycles for " with the rightmost a in �r�2.

Continuing, if the rightmost occurrence of a is in �2, �1�2 = ", for if a was
moved to �1 as above, that would be its only occurrence, and so would not be
fixed, a contradiction. Then " = �3 · · ·�r also, and again r must be even by
the second principle of math induction. ⇤
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Theorem (5.5 — Always Even or Always Odd).

If ↵ 2 Sn and ↵ = �1�2 · · ·�r = �1�2 · · · �s where the �’s and �’s are
2-cycles, then r and s are both even or both odd.

Proof.

�1�2 · · ·�r = �1�2 · · · �s =) " = �1�2 · · · �s��1
r · · ·��1

2 ��1
1 =)

" = �1�2 · · · �s�r · · ·�2�1 since a 2-cycle is its own inverse. Then, from the
lemma, r + s is even =) r and s are both even or r and s are both odd. ⇤

Definition (Even and Odd Permutations). A permutation that can be
expressed as an even number of 2-cycles is called an even permutation, and a
permutation that can be expressed as an odd number of 2-cycles is called an
odd permutation.

Theorem (5.6 — Even Permutaions Form a Group). The set of even
permutations in Sn forms a subgroup of Sn.

Proof.

If ↵,� 2 Sn and are both even, then ↵� is also even since it is an even number
of 2-cycles followed by an even number of 2-cycles. Since multiplication is closed
for even permutations, we have a subgroup by Theorem 3.3 (Finite Subgroup
Test). ⇤

The above proof is Page 119 # 17.

Definition (Alternating Group of Degree n). The group of even permuta-
tions of n symbols is denoted by An and is called the alternating group of degree
n.
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Theorem (5.7). For n > 1, An has order
n!

2
.

Proof.

For each odd permutation ↵, the permutation (1 2)↵ is even and (1 2)↵ 6= (1 2)�
when ↵ 6= �. Thus, there are at least as many even permutations as odd ones.

Also, for each even permutation ↵, (1 2)↵ is odd and (1 2)↵ 6= (1 2)� when
↵ 6= �. Thus, there are at least as many odd permutations as even ones.

Therefore, there is an equal number of odd and even permutations in Sn. Since

|Sn| = n!, |An| =
n!

2
. ⇤

Example (Page 111 # 8— Rotations of a Tetrahedron). The 12 rotations
of a regular tetrahedron can be described with the elements of A4. Table 5.1
from page 111 of the text is given below:
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Read the info in the text and view the graphs in Figure 5.1 on page 112.

Problem (Page 119 # 15). Let n be a positive integer. If n is odd, is an
n-cycle an odd or even permutation? If n is even, is an n-cycle an odd or even
permutation?

Solution.

(a1 a2 · · · an) = (a1 an)(a1 an�1) · · · (a1 a2), so (a1 a2 · · · an) can be written
as a product of n� 1 2-cycles.

Thus, n odd =) the n-cycle is even, and

n even =) the n-cycle is odd. ⇤

Problem (Page 119 # 9). What are the possible orders for the elements
of S6 and A6? What about A7?

Solution.

We find the orders by looking at the possible products of disjoint cycle structures
arranged by longest lengths left to right and denote an n-cycle by (n).

(6) has order 6 and is odd;

(5)(1) has order 5 and is even;

(4)(2) has order 4 and is even;

(4)(1)(1) has order 4 and is odd;

(3)(3) has order 3 and is even;

(3)(2)(1) has order 6 and is odd;

(3)(1)(1)(1) has order 3 and is even;

(2)(2)(2) has order 2 and is odd;

(2)(2)(1)(1) has order 2 and is even;

(2)(1)(1)(1)(1) has order 2 and is odd.
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So, for S6, the possible orders are 1, 2, 3, 4, 5, 6; for A6, the possible orders are
1, 2, 3, 4, 5.

We see from example 4 of the text (page 106) that orders of the elements of S7

are 1, 2, 3, 4, 5, 6, 7, 10, and 12.

The 3-cycle with the 4-cycle and the 2-cycle with the 5-cycles are odd. Elements
of A7 of orders 1–5 can be created as in S6. A 3-cycle with a pair of 2-cycles
has order 6, and a 7-cycle has order 7. So A7 has possible orders 1–7. ⇤

Problem (Page 120 # 29). How many elements of order 4 does S6 have?
How many elements of order 2 does S6 have?

Solution.

The possibilities for order 4 are a single 4-cycle or a 4-cycle with a two-cycle.
To create a 4-cycle, there are 6 choices for the first element, 5 choices for the
second, 4 for the third, and 3 for the fourth, so 6 · 5 · 4 · 3 = 360 choices. But

since each element could be listed first, there are
360

4
= 90 possible 4-cycles.

That leaves only one choice for a disjoint 2-cycle, so there are 90 · 2 = 180
elements of order 4.

Elements of order 2 could consist of 1, 2, or 3 2-cycles. Using the same reasoning
as above, there are 6 · 5/2 = 15 ways to create a 2-cycle. Then there are
4 ·3/2 = 6 ways to create a second 2-cycle. Only a single way remains to create
a third 2-cycle.

So there are 15 single 2-cycles, there are 15 · 6/2 = 45 pairs of disjoint 2-cycles
( divide by 2 since either 2-cycle could be listed first), and 15 · 6/6 = 15 triples
of disjoint 2-cycles (3! = 6 ways of ordering 3 items).

Thus there are 15 + 45 + 15 = 75 elements of order 2. ⇤
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Problem (Page 122 # 66). Show that for n � 3, Z(Sn) = {"}.

Solution. Suppose ↵ 2 Z(Sn), ↵ 6= ". Consider ↵ as written in cycle
form.

(1) If ↵ contains an n-cycle (a1 a2 · · · an), n � 3:

(a1 a2)(a1 a2 · · · an) = (a2 a3 · · · an�1 an) and

(a1 a2 · · · an)(a1 a2) = (a1 a3 a4 · · · an), a contradiction.

(2) If ↵ contains at least two 2-cycles, say ↵ = (a1 a2)(b1 b2) · · · :
(a1 b1)↵ = (a1 b1)(a1 a2)(b1 b2) · · · = (a1 a2 b1 b2) · · · and

↵(a1 b1) = (a1 a2)(b1 b2)(a1 b1) · · · = (a1 b2 b1 a2), a contradiction.

(3) ↵ = (a1 a2):

(a1 a3)(a1 a2) = (a1 a2 a3), and

(a1 a2)(a1 a3) = (a1 a3 a2), a contradiction.

Since this includes all possibilities, Z(Sn) = {"}. ⇤

Maple. See permutation.mw or permutation.pdf.


