CHAPTER 5

Permutation Groups

DEFINITION (Permutation of A, Permutation Group of A). A <u>permutation</u> of a set A is a function from A to A that is both 1–1 and onto.

A permutation group of a set A is a set of permutations of A that forms a group under function composition.

NOTE. We focus on the case where A is finite. We usually take $A = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

NOTATION. We usually define a permutation explicitly rather than by rule: For $A = \{1, 2, 3, 4, 5\}$, define a permutation α by

$$\alpha(1) = 3$$
, $\alpha(2) = 2$, $\alpha(3) = 5$, $\alpha(4) = 1$, $\alpha(5) = 4$,

or as

$$\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{bmatrix} \begin{array}{c} domain \\ range \end{array}.$$

Suppose

$$\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{bmatrix}.$$

Then

$$\beta \alpha = \begin{bmatrix} 1 & 2 & \boxed{3} & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ \boxed{3} & 2 & 5 & 1 & 4 \end{bmatrix}$$

applies permutations from right to left, so

$$\beta\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 1 \end{bmatrix} \text{ and } \alpha\beta = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 5 & 1 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 5 & 2 & 3 & 1 \end{bmatrix}.$$

We notice that this multiplication (composition) is not commutative.

Example. Symmetric Group S_3 — all permutations on $\{1, 2, 3\}$.

$$\varepsilon = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}, \text{ the identity, } \alpha = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}, \quad \alpha^2 = \begin{bmatrix} 3 & 1 & 2, \\ 1 & 2 & 3 \end{bmatrix}$$
$$\beta = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix} \text{ (note } \alpha^3 = \beta^2 = \varepsilon), \quad \alpha\beta = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{bmatrix}, \quad \alpha^2\beta = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix}.$$

This is the entire group since there are $3! = 3 \cdot 2 \cdot 1 = 6$ ways to define a 1–1 and onto function on $\{1, 2, 3\}$, three possibilities for 1, two for 2, and one for 3. Note

$$\beta \alpha = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} = \alpha^2 \beta \neq \alpha \beta,$$

so S_3 is not commutative. Also, using $\beta \alpha = \alpha^2 \beta$ (called a relation),

$$\beta \alpha^2 = (\beta \alpha) \alpha = (\alpha^2 \beta) \alpha = \alpha^2 (\beta \alpha) = \alpha^2 (\alpha^2 \beta) = \alpha^4 \beta = \alpha \beta.$$

EXAMPLE. Symmetric Group S_n — all permutations on $A = \{1, 2, ..., n\}$, also known as the symmetric group of degree n.

For
$$\alpha \in S_n$$
, $\alpha = \begin{bmatrix} 1 & 2 & \cdots & n \\ \alpha(1) & \alpha(2) & \cdots & \alpha(n) \end{bmatrix}$ and $|S_n| = n!$.

For $n \geq 3$, S_n is non-Abelian.

EXAMPLE. Symmetries of a Square. Consider the square with number vertices:

Then, in
$$D_4$$
, $R_{90} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \end{bmatrix} = \rho$ and $H = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{bmatrix} = \phi$ generate D_4 .

$$\rho^2 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{bmatrix} = R_{180}, \quad \rho^3 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 1 & 2 & 3 \end{bmatrix} = R_{270},$$

$$\rho^4 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix} = R_0, \quad \rho\phi = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{bmatrix} = D',$$

$$\rho^2\phi = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{bmatrix} = V, \quad \rho^3\phi = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 4 & 3 & 2 \end{bmatrix} = D.$$

Thus $D_4 \leq S_4$.

Cycle Notation

Consider $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 5 & 1 & 4 & 6 & 2 \end{bmatrix}$. View schematically as follows.

Or write as $\alpha = (1\ 3)(2\ 5\ 6)(4)$ — these can be written in any order. $(a_1\ a_2\ \cdots\ a_n)$ is a cycle of length n or an n-cycle (use commas between integers if $n \ge 10$).

One can consider a cycle as fixing any element not appearing in it. Thus, in S_6 , $\beta = (1\ 3) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 1 & 4 & 5 & 6 \end{bmatrix}$ and $\gamma = (2\ 5\ 6) = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 5 & 3 & 4 & 6 & 2 \end{bmatrix}$ can be multiplied to give

$$\alpha = \beta \gamma = \gamma \beta = (1\ 3)(2\ 5\ 6) = (2\ 5\ 6)(1\ 3).$$

Note the 4, which is fixed, no longer appears, and the multiplication is commutative since the cycles are <u>disjoint</u>.

EXAMPLE. In S_8 , let $\alpha = (1\ 3\ 8\ 2)(4\ 7)(5\ 6)$ and $\beta = (2\ 8\ 3)(4\ 7\ 6)$. Then $\alpha\beta = (1\ 3\ 8\ 2)(4\ 7)(5\ 6)(2\ 8\ 3)(4\ 7\ 6) = (1\ 3)(5\ 6\ 7)$ and $\beta\alpha = (2\ 8\ 3)(4\ 7\ 6)(1\ 3\ 8\ 2)(4\ 7)(5\ 6) = (1\ 2)(4\ 5\ 6)$. Note $\alpha\beta \neq \beta\alpha$.

EXAMPLE. In S_8 , let $\alpha = (1\ 4)(2\ 6\ 3)(5\ 8\ 7)$ and $\beta = (1\ 8)(2\ 6)(3\ 5)(4\ 7)$. Then $\alpha\beta = (1\ 7)(2\ 3\ 8\ 4\ 5)$ and $\beta\alpha = (1\ 7\ 3\ 6\ 5)(4\ 8)$.

Theorem (5.1 — Products of Disjoint Cycles). Every permutation of a finite set can be written as a cycle or a product of disjoint cycles.

PROOF. Let α be a permutation on A={1,2,...,n}. Choose any $a_1 \in A$. Let $a_2 = \alpha(a_1)$, $a_3 = \alpha(\alpha(a_1)) = \alpha^2(a_1)$, etc., until $a_1 = \alpha^m(a_1)$ for some m. This repetition of a_1 is guaranteed with $m \leq n$ since A is finite. Thus $(a_1 \ a_2 \ \cdots \ a_m)$ is a cycle of α .

If m < n, choose any element $b_1 \in A$ where b_1 is not in the first cycle, and let $b_2 = \alpha(b_1)$, $b_3 = \alpha(\alpha(b_1)) = \alpha^2(b_1)$, until $b_1 = \alpha^k(b_1)$ for some $k \le n$. We now have a second cycle $(b_1 \ b_2 \ \cdots \ b_k)$ of α .

If $\alpha^i(a_1) = \alpha^j(b_1)$ for some i and j, then $\alpha^{i-j}(a_1) = b_1 \Longrightarrow b_1 \in (a_1 \ a_2 \ \cdots \ a_m)$, contradicting how b_1 was chosen.

If m + k < n, we continue as above until there are no elements left. Thus

$$\alpha = (a_1 \ a_2 \ \cdots \ a_m)(b_1 \ b_2 \ \cdots \ b_k) \cdots (c_1 \ c_2 \ \cdots \ c_s).$$

THEOREM (5.2 — Disjoint Cycles Commute).

If the pair of cycles $\alpha = (a_1 \ a_2 \ \cdots \ a_m)$ and $\beta = (b_1 \ b_2 \ \cdots \ b_n)$ have no entries in common, then $\alpha\beta = \beta\alpha$.

Proof.

Suppose α and β are permutations of

$$S = \{a_1, a_2, \dots, a_m, b_1, b_2, \dots, b_n, c_1, c_2, \dots, c_k\}$$

where the c's are left fixed by both α and β .

[To show $\alpha\beta(x) = \beta\alpha(x) \forall x \in S$.]

If $x = a_i$ for some i, since β fixes all a elements,

$$(\alpha\beta)(a_i) = \alpha(\beta(a_i)) = \alpha(a_i) = a_{i+1}$$
 (with $a_{m+1} = a_1$) and

$$(\beta \alpha)(a_i) = \beta(\alpha(a_i)) = \beta(a_{i+1}) = a_{i+1},$$

so $\alpha\beta = \beta\alpha$ on the a elements.

A similar argument shows $\alpha\beta = \beta\alpha$ on the b elements.

Since α and β both fix the c elements,

$$(\alpha\beta)(c_i) = \alpha(\beta(c_i)) = \alpha(c_i) = c_i$$
 and

$$(\beta \alpha)(c_i) = \beta(\alpha(c_i)) = \beta(c_i) = c_i.$$

Thus $\alpha\beta(x) = \beta\alpha(x) \forall x \in S$.

Question: Is there an easy way to compute the order of a permutation?

Theorem (5.3 — Order of a Permutation). The order of a permutation of a finite set written in disjoint cycle form is the least common multiple of the lengths of the cycles.

PROOF.

Suppose α is a permutation of a finite set S, $\alpha = \alpha_1 \alpha_2 \cdots \alpha_r$ where $\{\alpha_1, \alpha_2, \dots, \alpha_r\}$ are disjoint cycles of S. Since disjoint cycles commute, $\alpha^m = \alpha_1^m \alpha_2^m \cdots \alpha_r^m$ for all $m \in \mathbb{Z}$. Now $\alpha^m = (1)$ (the identity) \iff $\alpha_i^m = (1) \ \forall \ i = 1, \dots, r$. For if $\alpha_i(x) \neq x$, $\alpha_j(x) = x \ \forall \ j \neq i$ (our cycles are disjoint), so $\alpha_i^m(x) = x$.

Since an *n*-cycle clearly has order n, by Corollary 2 of Theorem 4., $|\alpha_i| |\alpha|$ for $i = 1 \dots r$. Therefore, $\operatorname{lcm}(|a_1|, \dots, |a_r|) |\alpha|$. But $m = \operatorname{lcm}(|a_1|, \dots, |a_r|)$ is the least m such that $\alpha_i = (1)$ for $i = 1, \dots, r$, so $|\alpha| = \operatorname{lcm}(|a_1|, \dots, |a_r|)$. \square

Theorem (5.4 — Product of 2-Cycles). Every permutation in S_n , n > 1, is a product of 2-cycles (also called <u>transpositions</u>).

Proof.

 $(1) = (1\ 2)(2\ 1)$, so (1) is a product of 2-cycles.

By Theorem 5.1, for $\alpha \in S_n$,

$$\alpha = (a_1 \ a_2 \ \cdots \ a_k)(b_1 \ b_2 \ \cdots \ b_t) \cdots (c_1 \ c_2 \ \cdots \ c_s).$$

Then

$$\alpha = (a_1 \ a_k)(a_1 \ a_{k-1}) \cdots (a_1 \ a_2)(b_1 \ b_t)(b_1 \ b_{t-1}) \cdots (b_1 \ b_2) \cdots (c_1 \ c_s)(c_1 \ c_{s-1}) \cdots (c_1 \ c_2).$$

EXAMPLE.

$$(3 6 8 2 4) = (3 4)(3 2)(3 8)(3 6)$$

 $(1 3 7 2)(4 8 6) = (1 2)(1 7)(1 3)(4 6)(4 8)$

LEMMA. If $\varepsilon = \beta_1 \beta_2 \dots \beta_r$ where the β 's are 2-cycles, then r is even.

PROOF.

 $r \neq 1$, since ε is not a 2-cycle. If r = 2, we are done. Suppose r > 2 and that if $\varepsilon = \beta_1 \beta_2 \cdots \beta_s$ with s < r, then s is even.

Suppose the rightmost 2-cycle is $(a \ b)$. Since $(i \ j) = (j \ i)$, the product $\beta_{r-1}\beta_r$ can be expressed in one of the following forms shown on the right (these are 4 possibilities for β_{r-1} if $\beta_r = (a \ b)$):

$$\varepsilon = (a \ b)(a \ b)$$

$$(a \ b)(b \ c) = (a \ c)(a \ b)$$

$$(a \ c)(c \ b) = (b \ c)(a \ b)$$

$$(a \ b)(c \ d) = (c \ d)(a \ b)$$

In the first case, we may delete $\beta_{r-1}\beta_r$ from the original product, leaving $\varepsilon = \beta_1 \cdots \beta_{r-2}$, so r-2 is even by the second principle of math induction.

In the other 3 cases, We replace $\beta_{r-1}\beta_r$ by the products on the left, retaining the identity but moving the rightmost occurance of a into β_{r-1} .

Repeat the above procedure with $\beta_{r-2}\beta_{r-1}$. We either obtain $\varepsilon = \beta_1 \cdots \beta_{r-2}\beta_r$, implying r is even by the second principle of math induction, or obtain a new product of r 2-cycles for ε with the rightmost a in β_{r-2} .

Continuing, if the rightmost occurrence of a is in β_2 , $\beta_1\beta_2 = \varepsilon$, for if a was moved to β_1 as above, that would be its only occurrence, and so would not be fixed, a contradiction. Then $\varepsilon = \beta_3 \cdots \beta_r$ also, and again r must be even by the second principle of math induction.

THEOREM (5.5 — Always Even or Always Odd).

If $\alpha \in S_n$ and $\alpha = \beta_1 \beta_2 \cdots \beta_r = \gamma_1 \gamma_2 \cdots \gamma_s$ where the β 's and γ 's are 2-cycles, then r and s are both even or both odd.

PROOF.

$$\beta_1\beta_2\cdots\beta_r=\gamma_1\gamma_2\cdots\gamma_s\Longrightarrow \varepsilon=\gamma_1\gamma_2\cdots\gamma_s\beta_r^{-1}\cdots\beta_2^{-1}\beta_1^{-1}\Longrightarrow$$

 $\varepsilon = \gamma_1 \gamma_2 \cdots \gamma_s \beta_r \cdots \beta_2 \beta_1$ since a 2-cycle is its own inverse. Then, from the lemma, r + s is even $\Longrightarrow r$ and s are both even or r and s are both odd. \square

DEFINITION (Even and Odd Permutations). A permutation that can be expressed as an even number of 2-cycles is called an <u>even permutation</u>, and a permutation that can be expressed as an odd number of 2-cycles is called an <u>odd permutation</u>.

THEOREM (5.6 — Even Permutaions Form a Group). The set of even permutations in S_n forms a subgroup of S_n .

PROOF.

If $\alpha, \beta \in S_n$ and are both even, then $\alpha\beta$ is also even since it is an even number of 2-cycles followed by an even number of 2-cycles. Since multiplication is closed for even permutations, we have a subgroup by Theorem 3.3 (Finite Subgroup Test).

The above proof is Page 119 # 17.

DEFINITION (Alternating Group of Degree n). The group of even permutations of n symbols is denoted by A_n and is called the <u>alternating group of degree</u> \underline{n} .

THEOREM (5.7). For n > 1, A_n has order $\frac{n!}{2}$.

Proof.

For each odd permutation α , the permutation $(1\ 2)\alpha$ is even and $(1\ 2)\alpha \neq (1\ 2)\beta$ when $\alpha \neq \beta$. Thus, there are at least as many even permutations as odd ones.

Also, for each even permutation α , $(1\ 2)\alpha$ is odd and $(1\ 2)\alpha \neq (1\ 2)\beta$ when $\alpha \neq \beta$. Thus, there are at least as many odd permutations as even ones.

Therefore, there is an equal number of odd and even permutations in S_n . Since $|S_n| = n!, |A_n| = \frac{n!}{2}$.

EXAMPLE (Page 111 # 8— Rotations of a Tetrahedron). The 12 rotations of a regular tetrahedron can be described with the elements of A_4 . Table 5.1 from page 111 of the text is given below:

Table 5.1 The Alternating Group A_4 of Even Permutations of $\{1, 2, 3, 4\}$

(In this table, the permutations of A_4 are designated as $\alpha_1, \alpha_2, \ldots, \alpha_{12}$ and an entry k inside the table represents α_k . For example, $\alpha_3 \alpha_8 = \alpha_6$.)

A Znoingu:	α_1	α_2	α_3	α_4	α_5	α_6	α_7	α_8	α_9	α_{10}	α_{11}	α_{12}
$(1) = \alpha_1$	1	2	3	4	5	6	7	8	9	10	11	12
$(12)(34) = \alpha_2$	2	1	4	3	6	5	8	7	10	9	12	11
$(13)(24) = \alpha_3$	3	4	1	2	7	8	5	6	11	12	9	10
$(14)(23) = \alpha_4$	4	3	2	1	8	7	6	5	12	11	10	9
$(123) = \alpha_5$	5	8	6	7	9	12	10	11	1	4	2	3
$(243) = \alpha_6$	6	7	5	8	10	11	9	12	2	3	1	4
$(142) = \alpha_7$	7	6	8	5	11	10	12	9	3	2	4	1
$(134) = \alpha_8$	8	5	7	6	12	9	11	10	4	1	3	2
$(132) = \alpha_9$	9	11	12	10	1	3	4	2	5	7	8	6
$(143) = \alpha_{10}$	10	12	11	9	2	4	3	1	6	8	7	5
$(234) = \alpha_{11}$	11	9	10	12	3	1	2	4	7	5	6	8
$(124) = \alpha_{12}$	12	10	9	11	4	2	1	3	8	6	5	7

Read the info in the text and view the graphs in Figure 5.1 on page 112.

PROBLEM (Page 119 # 15). Let n be a positive integer. If n is odd, is an n-cycle an odd or even permutation? If n is even, is an n-cycle an odd or even permutation?

SOLUTION.

 $(a_1 \ a_2 \ \cdots \ a_n) = (a_1 \ a_n)(a_1 \ a_{n-1}) \cdots (a_1 \ a_2)$, so $(a_1 \ a_2 \ \cdots \ a_n)$ can be written as a product of n-1 2-cycles.

Thus, n odd \Longrightarrow the n-cycle is even, and

$$n \text{ even} \Longrightarrow \text{the } n\text{-cycle is odd.}$$

PROBLEM (Page 119 # 9). What are the possible orders for the elements of S_6 and A_6 ? What about A_7 ?

SOLUTION.

We find the orders by looking at the possible products of disjoint cycle structures arranged by longest lengths left to right and denote an n-cycle by (\underline{n}) .

- $(\underline{6})$ has order 6 and is odd;
- $(\underline{5})(\underline{1})$ has order 5 and is even;
- $(\underline{4})(\underline{2})$ has order 4 and is even;
- $(\underline{4})(\underline{1})(\underline{1})$ has order 4 and is odd;
- $(\underline{3})(\underline{3})$ has order 3 and is even;
- $(\underline{3})(\underline{2})(\underline{1})$ has order 6 and is odd;
- $(\underline{3})(\underline{1})(\underline{1})(\underline{1})$ has order 3 and is even;
- (2)(2)(2) has order 2 and is odd;
- (2)(2)(1)(1) has order 2 and is even;
- $(\underline{2})(\underline{1})(\underline{1})(\underline{1})(\underline{1})$ has order 2 and is odd.

So, for S_6 , the possible orders are 1, 2, 3, 4, 5, 6; for A_6 , the possible orders are 1, 2, 3, 4, 5.

We see from example 4 of the text (page 106) that orders of the elements of S_7 are 1, 2, 3, 4, 5, 6, 7, 10, and 12.

The 3-cycle with the 4-cycle and the 2-cycle with the 5-cycles are odd. Elements of A_7 of orders 1–5 can be created as in S_6 . A 3-cycle with a pair of 2-cycles has order 6, and a 7-cycle has order 7. So A_7 has possible orders 1–7.

PROBLEM (Page 120 # 29). How many elements of order 4 does S_6 have? How many elements of order 2 does S_6 have?

SOLUTION.

The possibilities for order 4 are a single 4-cycle or a 4-cycle with a two-cycle. To create a 4-cycle, there are 6 choices for the first element, 5 choices for the second, 4 for the third, and 3 for the fourth, so $6 \cdot 5 \cdot 4 \cdot 3 = 360$ choices. But since each element could be listed first, there are $\frac{360}{4} = 90$ possible 4-cycles. That leaves only one choice for a disjoint 2-cycle, so there are $90 \cdot 2 = 180$ elements of order 4.

Elements of order 2 could consist of 1, 2, or 3 2-cycles. Using the same reasoning as above, there are $6 \cdot 5/2 = 15$ ways to create a 2-cycle. Then there are $4 \cdot 3/2 = 6$ ways to create a second 2-cycle. Only a single way remains to create a third 2-cycle.

So there are 15 single 2-cycles, there are $15 \cdot 6/2 = 45$ pairs of disjoint 2-cycles (divide by 2 since either 2-cycle could be listed first), and $15 \cdot 6/6 = 15$ triples of disjoint 2-cycles (3! = 6 ways of ordering 3 items).

Thus there are 15 + 45 + 15 = 75 elements of order 2.

PROBLEM (Page 122 # 66). Show that for $n \geq 3$, $Z(S_n) = \{\varepsilon\}$.

SOLUTION. Suppose $\alpha \in Z(S_n)$, $\alpha \neq \varepsilon$. Consider α as written in cycle form.

(1) If α contains an n-cycle $(a_1 \ a_2 \ \cdots \ a_n), \ n \geq 3$:

$$(a_1 \ a_2)(a_1 \ a_2 \ \cdots \ a_n) = (a_2 \ a_3 \ \cdots \ a_{n-1} \ a_n)$$
 and

$$(a_1 \ a_2 \ \cdots \ a_n)(a_1 \ a_2) = (a_1 \ a_3 \ a_4 \ \cdots \ a_n),$$
 a contradiction.

(2) If α contains at least two 2-cycles, say $\alpha = (a_1 \ a_2)(b_1 \ b_2) \cdots$:

$$(a_1 \ b_1)\alpha = (a_1 \ b_1)(a_1 \ a_2)(b_1 \ b_2)\cdots = (a_1 \ a_2 \ b_1 \ b_2)\cdots$$
 and

$$\alpha(a_1 \ b_1) = (a_1 \ a_2)(b_1 \ b_2)(a_1 \ b_1) \cdots = (a_1 \ b_2 \ b_1 \ a_2),$$
 a contradiction.

(3)
$$\alpha = (a_1 \ a_2)$$
:

$$(a_1 \ a_3)(a_1 \ a_2) = (a_1 \ a_2 \ a_3)$$
, and

$$(a_1 \ a_2)(a_1 \ a_3) = (a_1 \ a_3 \ a_2)$$
, a contradiction.

Since this includes all possibilities, $Z(S_n) = \{\varepsilon\}.$

Maple. See permutation.mw or permutation.pdf.