CHAPTER 12

Introduction to Rings

Motivation and Definition

Many sets are endowed with two operations, addition and multiplication. An abstract concept that takes this into consideration is the <u>ring</u>.

DEFINITION (Ring). A ring R is a nonempty set with two binary operations, usually denoted as addition and multiplication such that

(1) R with addition is an Abelian group.

(2) For all $a, b, c \in R$, a(bc) = (ab)c.

(3) For all $a, b, c \in R$, a(b+c) = ab + ac and (b+c)a = ba + ca.

DEFINITION.

(1) A ring R is commutative if its multiplication is commutative.

(2) A ring R is a ring with identity if there is a multiplicative identity or unity $1 \neq 0$ such that $a \cdot 1 = 1 \cdot a = a$ for all $a \in R$.

(3) A nonzero element a of a commutative ring with unity is a <u>unit</u> of the ring if there exists $a^{-1} \in R$ such that $a \cdot a^{-1} = 1 = a^{-1} \cdot a$.

(4) If $a \neq 0$ and b are in a commutative ring R, we say a|b or a is a factor of b if there exists $c \in R$ such that ac = b. We write $a \not b$ if a does not divide b.

NOTE. a is a <u>unit</u> of R if a|1.

RECALL. *na* in an additive group means $\underbrace{a + a + \dots + a}_{n \text{ terms}}$.

When there is a possibility of confusion, we will indicate this as $n \cdot a$.

EXAMPLE.

(1) \mathbb{Z} is a commutative ring with *unity* 1. 1 and -1 are the only units.

(2) \mathbb{Z}_n with addition and multiplication modulo n is a commutative ring with identity. The set of units is U(n).

(3) The set $\mathbb{Z}[x]$ of all polynomials in x with integer coefficients under ordinary addition and multiplication of polynomials is a commutative with identity f(x) = 1.

(4) $M_2(\mathbb{Z})$, the set of 2×2 matrices with integer entries is a noncommutative ring with unity $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$.

(5) The set $3\mathbb{Z}$ of multiples of 3 under ordinary addition and multiplication is a commutative ring without identity.

(6) $F = \{f : \mathbb{R} \to \mathbb{R}\}$ is a commutative ring with identity where (f+g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x). f(x) = 0 is the zero function and g(x) = 1 is the identity.

(7) Let R_1, R_2, \ldots, R_n be rings. Then

 $R_1 \oplus R_2 \oplus \cdots \oplus R_n = \{(a_1, a_2, \dots, a_n) | a_i \in R_i\}$

is a ring with componentwise addition and multiplication, i.e.,

$$(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n) = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

and

 $(a_1, a_2, \dots, a_n)(b_1, b_2, \dots, b_n) = (a_1b_1, a_2b_2, \dots, a_nb_n).$ This is the <u>direct sum</u> of R_1, R_2, \dots, R_n . Properties of Rings

THEOREM (12.1 — Rules of Multiplication). Let $a, b, c \in R$, a ring. Then (1) a0 = 0a = 0.

Proof.

$$0 + a0 = a0 = a(0 + 0) = a0 + a0 \Longrightarrow a0 = 0$$
 by right cancellation.
 $0a + 0 = 0a = (0 + 0)a = 0a + 0a \Longrightarrow 0a = 0$ by left cancellation.

 \square

(2)
$$a(-b) = (-a)b = -(ab)$$
.
PROOF.
 $a(-b) + ab = a(-b+b) = a0 = 0 \Longrightarrow a(-b) = -(ab)$.
The second part is analogous.
(3) $(-a)(-b) = ab$.

Proof.

$$0 = 0(-b) = (a + (-a))(-b) = a(-b) + (-a)(-b) = -(ab) + (-a)(-b) \Longrightarrow ab = (-a)(-b).$$

(4)
$$a(b-c) = ab - ac$$
 and $(b-c)a = ba - ca$.
PROOF.

a(b-c) = a(b+(-c)) = ab + a(-c) = ab + (-(ac)) = ab - ac. The other is similar.

If R has a unit element 1, then (5) (-1)a = -a.

PROOF. Follows directly.from (2).

$$(6) (-1)(-1) = 1.$$

PROOF. Follows directly from (3).

THEOREM (12.2 — Uniqueness of the Unit and Inverses). If a ring has an identity, it is unique. If a ring element has a multiplicative inverse, it is unique.

PROOF. Same as for groups.

NOTE. In general, if $a \neq 0$ and ab = ac, we cannot conclude b = c (a may not have a multiplicative inverse). Also, if $a^2 = a$, we cannot conclude a = 0or a = 1 (the ring may not have a unit 1). We do <u>not</u> have a multiplicative group.

<u>Subrings</u>

DEFINITION (Subring). A subset S of a ring R is a <u>subring</u> of R if S is itself a ring with the operations of R.

THEOREM (12.3 — Subring Test). A nonempty subset S of a ring R is a subring if S is closed under subtraction and multiplication, i.e., if $a, b \in S \implies a - b \in S$ and $ab \in S$.

Proof.

Since $a, b \in S \implies a - b \in S$, S is an Abelian group by the one-step subgroup test. The associative and distributive properties of S follow from those of R. The closure condition assures that multiplication in S is a binary operation. \Box

 \square

 \square

EXAMPLE.

(1) $\{0\}$, the trivial subring, and R are subrings of any ring R.

(2) $\{0,3,9\}$ is a subring of \mathbb{Z}_{12} . Although 1 is the identity of \mathbb{Z}_{12} , 9 is the identity of the subring.

(3) For all positive integers $n, n\mathbb{Z} = \{0, \pm n, \pm 2n, \dots\}$ is a subring of \mathbb{Z} .

(4) The <u>Gaussian integers</u> $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}\}$ is a subring of \mathbb{C} .

(5) $\{f : \mathbb{R} \to \mathbb{R} : f(a) = 0\}$ for some fixed $a \in \mathbb{R}$ is a subring of $F = \{f : \mathbb{R} \to \mathbb{R}\}$. So is $\{f : \mathbb{R} \to \mathbb{R} | f \text{ is continous}\}$. (6) The set $\left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} | a, b \in \mathbb{Z} \right\}$ of diagonal matrices is a subring of all 2×2 matrices over \mathbb{Z} .

We can use a subring lattice diagram to show the relationship between a ring and its various subrings. In this diagram, any ring is a subring of all the rings it is connected to by one or more upward lines.

Figure 12.1 Partial subring lattice diagram of C.