THEOREM. There is no rational number whose square is 2.

PROOF.

We use indirect reasoning.

Suppose x is a rational number whose square is 2.

Then x can be written in lowest terms as $\frac{a}{b}$, where a is an integer and b is a positive integer.

Since $x^2 = 2$, $\left(\frac{a}{b}\right)^2 = 2$, so $\frac{a^2}{b^2} = 2$. Then $a^2 = 2b^2$, so a^2 is even.

But then a is even, so $a = 2n$ for some integer n.

Then $(2n)^2 = 2b^2$, so $4n^2 = 2b^2$.

Then $2n^2 = b^2$, so b^2 is even, and thus b is even.

Then a and b both have 2 as a common factor, so $\frac{a}{b}$ cannot be in lowest terms, a contradiction.

Thus x cannot be rational. \qed

We have learned that every fraction can be written as a repeating decimal, and vice-versa. Then so can every rational number just by taking opposites.

Thus the irrational numbers, the numbers that are not rational, must have infinite nonrepeating decimal representations.

Definition (The Real Numbers). The set of real numbers, \mathbb{R}, is the set of all numbers that have an infinite decimal representation.