• EDSA: Power Analysis

• Background Reading:

• What is Statistical Power?
 • Essential concepts include:
 – Examining the null hypothesis H_0
 – α (significance levels)
 – Type I & Type II errors

• Two types of Statistical Power
 • More preferred*
 – *Prospective Power Analysis
 • Before collecting data: important for considering design sensitivity
 – Retrospective Power Analysis
 • Used to determine whether or not the study was well designed (after the fact!)
 • Remember: H_0 states that findings of study are no different that would have occurred by chance. We calculate the probability of achieving the observed results if H_0 were true. If probability is low ($p<0.05$) then we reject H_0.
 – Thus, we say statistically significant

• Statistical Testing
 • When performing a statistical test there are 4 possible outcomes:
 – H_0 is true or false
 – Rejection or retention of H_0
 – Errors

 • When H_0 is true and you reject it, Type I error has been committed
 – i.e., when there really is no effect, but the statistical test is significant by chance
 – If H_0 is true, the probability of making Type I error is α (the significance level associated with your test)

 • When H_0 is false and you fail to reject it, Type II error has been committed
 – If there is really is an effect in the population, but your test is non-significant due to inadequate power or high sampling error
– There really is an effect, but left undetected is called β

- Statistical Power by definition is the probability of not missing an effect, due to sampling error, when there really is an effect to be found.

 – Depends on:

 • Sample size

 • Level of α

 • Minimum effect size (more on this later)

- What is effect size?

- We will use Cohen’s d

Difference between means for groups

Estimates of population standard deviation

- Rule of Thumb for Cohen’s d

- Cohen’s d calculation

- $d = \frac{x_1 - x_2}{S_{pooled}}$

- $S_{pooled} = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$

- Decisions to make regarding power

- To make reviewers happy the typical cutoff for statistical power is 80%

 – Acceptable risk of Type II error is (1 in 5) 0.2.

 – Adequate power $= 1 - 0.2 = 0.8$

 – Why do power analyses?

- Experiments are expensive. Project has to be feasible in terms of budget and within an adequate time frame