Ecology of Algae

• Algae play comparable role to that of terrestrial plants.
• Oceanic algae are subjected to variations in humidity, temperature, salinity, light, and harsh wave conditions.
Phytoplankton

- Photosynthetic algae + cyanobacteria.
- Base of the food chain.
- Serious human disturbance
 - 'algal blooms' (red or brown tides)

http://serc.carleton.edu/images/microbelife/topics/red_tide_for_ed.jpg

http://www.cop.noaa.gov/_images/stressors/extremeevents/rtdeadfish.jpg
Algae & Climate Change

- Phytoplankton reduce CO$_2$ in the atmosphere.
- Form CaCO$_3$ as they fix CO$_2$.
- CO$_2$ removed from water is replaced by atmospheric CO$_2$, creating a suction effect, known as “CO$_2$ drawdown”.

Dinophyta (Dinoflagellates)

- 2000 – 4000 spp.
- No photosynthetic pigments in many dino’s.
- Peridinin
- Starch as food reserve.
- No flagella (except gametes) or 2 dissimilar (1 transverse, 1 longitudinal).
- Vesicles beneath plasma membrane with or without cellulose plates.
- Predominantly marine + some freshwater.

Dinoflagellates

- Half lack photosynthetic apparatus;
 - Obtain nutrients by ingestion or absorbing DOC’s.
- Chl a & b often masked by peridinin;
 - Accessory pigment typical of chrysophytes.
Pigmented dino’s occur as symbionts in:
- Sponges, jellyfish, corals, octupuses & squids

When symbiotic:
- Lack armored plates and appear as golden spherical cells
- Zooxanthellae

Dinoflagellate stress responses

- Under low nutrient levels
 - Nonmotile resting cysts that drift to lake or ocean bottom.
 - Under favorable conditions cysts germinate.
 - Cyst production, movement, and germination help explain toxic algal blooms.

Pfisteria piscicida

- Biflagellated cell
- Amoeboid stage (dominate life cycle)
- Amoeboid cyst stage
Euglenoids: Euglenophyta

- ~ 900 spp.
- Paramylon is food reserve.
- 1/3 of genera contain chloroplasts
 - Rest are colorless heterotrophs
- Unicellular
 - No cell wall
 - Pellicle
 - Eyespot
 - Stigma
 - Contractile vacuole

Cryptomonads: Cryptophyta

- ~ 200 spp.
- Starch is food reserve
- Very small (3 to 50 micrometers)
- Very high palatability
- Cold or subsurface waters
- Arose through the fusion of two different eukaryotic cells:
 - Heterotrophic
 - Photosynthetic
- Outermost membrane
 - Chloroplast endoplasmic reticulum
Haptophytes: Haptophyta

• ~ 300 spp.
• Chrysolaminarin is food reserve
• Primarily marine phytoplankton
• Unicellular, colonial flagellates, & non-motile single cells & colonies.
• H’ highest in tropics.

Haptonema

• *Haptein* “to fasten” sense of touch.
• Threadlike structure
 – Bends & coils – cannot beat like a flagellum.
Coccoliths

- Small, flat scales on outer surface of cell.
 - Species with coccoliths are known as coccolithophorids.

Heterokonts

- Means ‘different flagella’
- a.k.a. stramenopiles
 - Flagellum in pairs
 - 1 flagellum long & ornamented with hairs
 - 1 flagellum shorter and smooth

Oomycetes: Oomycota

- ~ 700 spp.
- No photosynthetic pigments
- Glycogen is food reserve
- Reproduce sexually & asexually
 - Asexual zoospores
 - Two flagella (remember)
Sexual Oogamous
Gametes = size & shape
Smaller gamete is male
Non-motile female

Isogamy
(a)

Anisogamy
(b)

Oogamy
(c)

Specific types of Oomycetes

- Water molds
 - *Achlya ambisexualis*
- Terrestrial
 - Sudden oak death
 - Potato blight

Phytophthora infestans
Diatoms: Bacillariophyta

• 100,000 spp.
• Chrysolaminarin is food reserve
• Silica is cell wall component
• Marine or freshwater habitats
• Serve as primary source of food for aquatic animals.
• Lack flagella; except on male gametes

Walls of Diatoms

• Two halves
 – Frustules (walls) made of polymerized opaline silica
 \[\text{SiO}_2 \cdot n\text{H}_2\text{O} \]
 – Fit together like a petri-dish.

Symmetry in Diatoms

• Two types are recognized
 – Pennate diatoms
 – Centric diatoms

1/2 of an Entogonia frustule
Diatom Asexual Reproduction

- Each daughter cell receives ½ of the frustule of its parental cell
 - Constructs a new half
- Thus, one of two new cells is smaller than parent.
- After multiple generations, populations size decreases to a critical level.
- Once this occurs…….

- Centric diatoms
 - Oogamous
- Pennate diatoms
 - Isogamous

- Unfavorable conditions
 - Form resting stages, sinking to the bottom
Chrysophytes: Chrysophyta

- 1,000 spp.
- Chrysolaminarin is food reserve
- No flagella or 2
- No cell wall or silica scales (sometimes cellulose).
- Predominantly freshwater (few marine)

- Primary pigment is fucoxanthin
 - Chrysos = gold
 - Phyton = plant
- Produces brown tides
 - Shellfish
 - Salmon
 - Poor taste of some drinking water

Brown algae: Phaeophyta

- 1,500 spp.
- Laminarin, mannitol is food reserve
- Fucoxanthin pigment
- 2 flagella
- Cellulose cell wall
- Almost all marine
 - Temperate to polar
 - Flourish in cold-water oceans
Basic form

• Thallus
 – Simple, relatively undifferentiated vegetative body.

Kelps & Rockweeds

• *Laminaria*
 - Blade
 - Stipe
 - Holdfast
Internal kelp structure

- Complex
- Elongated cells modified for food conduction
 - > 60 cm / hr.
 - Blades to holdfast regions

Red Algae: Rhodophyta

- 4,000 – 6,000 spp.
- Chl a & phycobillin pigment
- Floridean starch is food reserve
- No flagella
- Cellulose microfibrils & calcium carbonate cell wall components.
- ~100 freshwater species; predominantly marine.
Cells of red algae are unique

- No centrioles or flagellated cells.
- Microtubule organizing centers
 - Polar rings
- Main food reserve is floridean starch
 - Stored in cytoplasm
- Cells are interconnected by
 - Pit connections

Complicated life histories

- Reproduce asexually by discharging spores
- Alternation of generations
 - Gamete-producing gametophyte
 - Spore-producing sporophyte
 - Gametophyte produces spermatangia
 - Female gamete contains carpogonium
 - Carpogonium develops protuberance
 - Trichogyn
 - Then diploid zygote produces a few diploid carpospores

Polysiphonia
Green algae: Chlorophyta

- 17,000 spp.
- Chl a, b, carotenoids
- Starch is the food reserve
- None or 2 flagella; equal or unequal whiplash
- Glycoproteins, cellulose, or plasmodesmata cell wall.
- Mostly aquatic, many in symbiotic relationships.

Cosmopolitan

- Surface of snow “green snow”
- Tree trunks
- Soil
- Symbiotic relationships with:
 - Lichens
 - Protozoa
 - Sponges
 - Coelenterates
- Very closely related to bryophytes & vascular plants.
Great differences between classes

- Chlorophyceae
 - phycoplast
 - Ensures cleavage furrow passes between daughter nuclei
 - Flagellar roots
- Charophyceae
 - Phragmoplast
 - Cytokinetic microtubules
 - Identical to those present in bryophytes and vascular plants.

nonpersistent mitotic spindle separated by phycoplast

Persistent spindle. Furrowing occurs.

Plant-like phragmoplast. Cytokinesis occurs by cell plate formation.
Chlamydomonas

- Unicellular + Motile
- Two equal flagella
- Polyphyletic
- Sexual & asexual reproduction

Chlorophyceae

- **Volvox**
 - Made of single layer of 500 to 60,000 vegetative, biflagellated cells that serve a photosynthetic function.
 - Undergo repeated mitosis that “hatch” from parental spheroid
 - At first all flagella face hollow center
 - Must turn inside-out before becoming motile.
Volvox carteri

Chlorophyceae
- Chlorococcum
 - Unicellular & non-motile
- Hydrodictyon
 - “Water net” non-motile & colonial
- Oedogonium
 - Unbranched & filamentous

Ulvophytes
- Filamentous or composed of flat sheets
- Alternation of generations
Charophytes

- Unicellular, colonial, filamentous, and parenchymatous genera
- Most closely resemble bryophytes & vascular plants.
- *Spirogyra*
 - Filamentous: often forms slimy floating masses
 - Reproduction occurs by conjugation
Coleochaetales & Charales

- Possess traits found only in bryophytes and vascular plants.
- Oogamous
- Sperm are ultra-structurally similar to bryophytes.

Myxomycota a.k.a slime molds

- 700 spp.
- No photosynthetic pigments
- Glycogen is food reserve
- Usually 2 flagella
- No cell wall on plasmodium
- Terrestrial habitat
• Lack cell wall
 – Mass of naked protoplasm = plasmodium
• Plasmodial growth continues as long as nutrients + water are available
 – Will migrate away from feeding area
 – Crosses roads, lawns, climbs trees.
 – Once stopped, divides into smaller mounds.
Summary

- Kingdom protista are eukaryotic organisms not included in plant, fungal, or animal kingdoms.
- Algae obtain nutrients in a variety of ways
 - Particle feeding
 - Photosynthesis
 - Phagocytosis
- Heterokonts have two flagella:
 - Different length & ornamentation
- Brown algae are most conspicuous seaweeds
- Red algae have complex life histories
- Green algae are recognized on basis of cell division, reproductive cell structure, and molecular similarities.
- Slime molds are heterotrophic protists with similarities to both fungi and protozoa.