CHAPTER 6

Isomorphisms

A while back, we saw that \(\langle a \rangle \) with \(|\langle a \rangle| = 42 \) and \(\mathbb{Z}_{42} \) had basically the same structure, and said the groups were “isomorphic,” in some sense the same.

Definition (Group Isomorphism). An **isomorphism** \(\phi \) from a group \(G \) to a group \(\overline{G} \) is a 1–1 mapping from \(G \) onto \(\overline{G} \) that preserves the group operation. That is,

\[
\phi(ab) = \phi(a)\phi(b) \quad \forall \ a, b \in G.
\]

If there is an isomorphism from \(G \) onto \(\overline{G} \), we say \(G \) and \(\overline{G} \) are **isomorphic** and write \(G \cong \overline{G} \).

Note. The operations in \(G \) and \(\overline{G} \) may be different. The operation to the left of “=” is in \(G \), while that on the right is in \(\overline{G} \).

<table>
<thead>
<tr>
<th>(G) Operation</th>
<th>(\overline{G}) Operation</th>
<th>Operation Preservation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\cdot)</td>
<td>(\cdot)</td>
<td>(\phi(a \cdot b) = \phi(a) \cdot \phi(b))</td>
</tr>
<tr>
<td>(\cdot)</td>
<td>(+)</td>
<td>(\phi(a \cdot b) = \phi(a) + \phi(b))</td>
</tr>
<tr>
<td>(+)</td>
<td>(\cdot)</td>
<td>(\phi(a + b) = \phi(a) \cdot \phi(b))</td>
</tr>
<tr>
<td>(+)</td>
<td>(+)</td>
<td>(\phi(a + b) = \phi(a) + \phi(b))</td>
</tr>
</tbody>
</table>
To establish an isomorphism:

1. Define \(\phi : G \rightarrow \overline{G} \).
2. Show \(\phi \) is 1–1: assuming \(\phi(a) = \phi(b) \), show \(a = b \).
3. Show \(\phi \) is onto: \(\forall \overline{g} \in \overline{G} \). show \(\exists g \in G \implies \phi(g) = \overline{g} \).
4. Show \(\phi(ab) = \phi(a)\phi(b) \) \(\forall a, b \in G \).

Example. With \(|a| = 42 \), show \(\langle a \rangle \approx \mathbb{Z}_{42} \).

Proof.

Define \(\phi : \langle a \rangle \rightarrow \mathbb{Z}_{42} \) by \(\phi(a^n) = n \mod 42 \).

[Show 1–1.] Suppose \(\phi(a^n) = \phi(a^m) \). Then

\[
 n = m \mod 42 \implies 42 | n - m \implies a^n = a^m
\]

by Theorem 4.1. Thus \(\phi \) is 1–1.

[Show onto.] For all \(n \in \mathbb{Z}_{42} \), \(a^n \in \langle a \rangle \) and \(\phi(a^n) = n \), so \(\phi \) is onto.

[Show operation preservation.] For all \(a^n, a^m \in \langle a \rangle \),

\[
 \phi(a^n a^m) = \phi(a^{n+m}) = n + m \mod 42 = n \mod 42 + m \mod 42 = \phi(a^n) + \phi(a^m).
\]

Thus, by definition, \(\langle a \rangle \approx \mathbb{Z}_{42} \). \(\square \)

Example. Any finite cyclic group \(\langle a \rangle \) with \(|\langle a \rangle| = n \) is isomorphic to \(\mathbb{Z}_n \) under \(\phi(a^k) = k \mod n \). The proof of this is identical to that of the previous example.
EXAMPLE. Let G be the positive real numbers with multiplication and \overline{G} be the group of real numbers with addition. Show $G \cong \overline{G}$.

PROOF.

Define $\phi : G \to \overline{G}$ by $\phi(x) = \ln(x)$.

[Show 1–1.] Suppose $\phi(x) = \phi(y)$. Then

$$\ln(x) = \ln(y) \implies e^{\ln(x)} = e^{\ln(y)} \implies x = y,$$

so ϕ is 1–1.

[Show onto] Now suppose $x \in \overline{G}$. $e^x > 0$ and $\phi(e^x) = \ln e^x = x$, so ϕ is onto.

[Show operation preservation.] Finally, for all $x, y \in G$,

$$\phi(xy) = \ln(xy) = \ln x + \ln y = \phi(x) + \phi(y),$$

so $G \cong \overline{G}$.

[Question: is ϕ the only isomorphism?]

EXAMPLE. Any infinite cyclic group is isomorphic to \mathbb{Z} with addition. Given $\langle a \rangle$ with $|a| = \infty$, define $\phi(a^k) = k$. The map is clearly onto. If $\phi(a^n) = \phi(a^m)$, $n = m \implies a^n = a^m$, so ϕ is 1–1. Also,

$$\phi(a^n a^m) = \phi(a^{n+m}) = n + m = \phi(n) + \phi(m),$$

so $\langle a \rangle \cong \mathbb{Z}$.

Consider $\langle 2 \rangle$ under addition, the cyclic group of even integers. The $\langle 2 \rangle \cong \mathbb{Z} = \langle 1 \rangle$ with $\phi : \langle 2 \rangle \to \mathbb{Z}$ defined by $\phi(2n) = n$.
EXAMPLE. Let G be the group of real numbers under addition and \overline{G} be the group of positive numbers under multiplication. Define $\phi(x) = 2^{x-1}$. ϕ is 1–1 and onto but

$$\phi(1+2) = \phi(3) = 4 \neq 2 = 1 \cdot 2 = \phi(1)\phi(2),$$

so ϕ is not an isomorphism.

Can this mapping be adjusted to make it an isomorphism?

Use $\phi(x) = 2^x$.

If $\phi(x) = \phi(y)$, $2^x = 2^y \implies \log_2 2^x = \log_2 2^y \implies x = y$, so ϕ is 1–1.

Given any positive y, $\phi(\log_2 y) = 2^{\log_2 y} = y$, so ϕ is onto.

Also, for all $x, y \in \mathbb{R}, \phi(x+y) = 2^{x+y} = 2^x2^y = \phi(x)\phi(y)$.

Thus ϕ is an isomorphism.

EXAMPLE. Are $U(8)$ and $U(12)$ isomorphic?

SOLUTION.

$U(8) = \{1, 3, 5, 7\}$ is noncyclic with $|3| = |5| = |7| = 2$.

$U(12) = \{1, 5, 7, 11\}$ is noncyclic with $|5| = |7| = |11| = 2$.

Define $\phi : U(8) \to U(12)$ by $1 \to 1, \ 3 \to 5, \ 5 \to 7, \ 7 \to 11$.

ϕ is clearly 1–1 and onto. Regarding operation preservation:

$\phi(3 \cdot 5) = \phi(7) = 11$ and $\phi(3)\phi(5) = 5 \cdot 7 = 11$.

$\phi(3 \cdot 7) = \phi(5) = 7$ and $\phi(3)\phi(7) = 5 \cdot 11 = 7$.

$\phi(5 \cdot 7) = \phi(3) = 5$ and $\phi(5)\phi(7) = 7 \cdot 11 = 5$.

$\phi(1 \cdot 3) = \phi(3) = 5$ and $\phi(1)\phi(3) = 1 \cdot 5 = 5$.

etc.

Since both groups are Abelian, we need only check each pair in a single order. Thus, $U(8) \cong U(12)$.

\square
This group of order 4, with all non-identity element of order 2, is called the Klein 4 group. Any other group of order 4 must have an element of order 4, so is cyclic and isomorphic to \mathbb{Z}_4.

For orders 1, 2, 3, 5, there are only the cyclic groups \mathbb{Z}_1, \mathbb{Z}_2, \mathbb{Z}_3, and \mathbb{Z}_5.

Problem (Page 140 # 36).

Let $G = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ and $H = \left\{ \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \mid a, b \in \mathbb{Q} \right\}$. Show that G and H are isomorphic under addition. Prove that G and H are closed under multiplication. Does your isomorphism preserve multiplication as well as addition? (G and H are examples of rings — a topic we begin in Chapter 12)

Solution.

Given $a + b\sqrt{2}, c + d\sqrt{2} \in G$.

$$(a + b\sqrt{2}) + (c + d\sqrt{2}) = (a + c) + (b + d)\sqrt{2} \in G$$

and

$$(a + b\sqrt{2})(c + d\sqrt{2}) = (ac + 2bd) + (ad + bc)\sqrt{2} \in G$$

since $(a + c), (b + d), (ac + 2bd), (ad + bc) \in \mathbb{Q}$.

Also, if $\begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$, $\begin{bmatrix} c & 2d \\ d & c \end{bmatrix} \in H$,

$$\begin{bmatrix} a & 2b \\ b & a \end{bmatrix} + \begin{bmatrix} c & 2d \\ d & c \end{bmatrix} = \begin{bmatrix} a + c & 2(b + d) \\ b + d & a + c \end{bmatrix}$$

and

$$\begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \begin{bmatrix} c & 2d \\ d & c \end{bmatrix} = \begin{bmatrix} ac + 2bd & 2(ad + bc) \\ ad + bc & ac + 2bd \end{bmatrix} \in H$$

since $(a + c), (b + d), (ac + 2bd), ad + bc \in \mathbb{Q}$.

Thus G and H are closed under both addition and multiplication. Also, G and H are groups under addition (you can prove this, if you desire).
Define $\phi : G \to H$ by $\phi(a + b\sqrt{2}) = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$.

Suppose $\phi(a + b\sqrt{2}) = \phi(c + d\sqrt{2})$. Then $\begin{bmatrix} a & 2b \\ b & a \end{bmatrix} = \begin{bmatrix} c & 2d \\ d & c \end{bmatrix} \implies a = c$ and $b = d \implies a + b\sqrt{2} = c + d\sqrt{2} \implies \phi$ is 1-1.

For $\begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \in H$, $a + b\sqrt{2} \in G$ and $\phi(a + b\sqrt{2}) = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$, so ϕ is onto.

Now suppose $a + b\sqrt{2}, c + d\sqrt{2} \in G$. Then

$$
\phi((a + b\sqrt{2}) + (c + d\sqrt{2})) = \phi((a + c) + (b + d)\sqrt{2}) = \begin{bmatrix} a + c & 2(b + d) \\ b + d & a + c \end{bmatrix} = \begin{bmatrix} a + c & 2b + 2d \\ b + d & a + c \end{bmatrix} = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} + \begin{bmatrix} c & 2d \\ d & c \end{bmatrix} = \phi(a + b\sqrt{2}) + \phi(c + d\sqrt{2}).
$$

Thus ϕ is an isomorphism under addition.

Also,

$$
\phi((a + b\sqrt{2})(c + d\sqrt{2})) = \phi((ac + 2bd) + (ad + bc)\sqrt{2}) = \begin{bmatrix} ac + 2bd & 2(ad + bc) \\ ad + bc & ac + 2bd \end{bmatrix} = \begin{bmatrix} ac + 2bd & 2ad + 2bc \\ ad + bc & ac + 2bd \end{bmatrix} = \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \begin{bmatrix} c & 2d \\ d & c \end{bmatrix} = (\phi(a + b\sqrt{2}))(\phi(c + d\sqrt{2})).
$$

So ϕ preserves multiplication also. (We will later see that this makes ϕ a ring homomorphism.)

\[\square\]
Problem (Page 141 # 54). Consider $G = \langle m \rangle$ and $H = \langle n \rangle$ where $m, n \in \mathbb{Z}$. These are groups under addition. Show $G \approx H$. Does this isomorphism also preserve multiplication?

Solution.

Define $\phi : G \to H$ by $\phi(x) = \frac{n}{m}x$. Suppose $\phi(x) = \phi(y)$. Then

$$\frac{n}{m}x = \frac{n}{m}y \implies x = y \implies \phi \text{ is } 1-1.$$

For $x \in H$, $x = rn$ where $r \in \mathbb{Z}$. Then $\frac{m}{n}x = \frac{m}{n}rn = rm \in G$. Then

$$\phi \left(\frac{m}{n}x \right) = \frac{n}{m} \left(\frac{m}{n}x \right) = x,$$

so ϕ is onto. Now, suppose $x, y \in G$. Then

$$\phi(x + y) = \frac{n}{m}(x + y) = \frac{n}{m}x + \frac{n}{m}y = \phi(x) + \phi(y),$$

so addition is preserved and $G \approx H$. But,

$$\phi(xy) = \frac{n}{m}(xy) \neq \left(\frac{n}{m}x \right) \left(\frac{n}{m}y \right) = \phi(x)\phi(y),$$

so multiplication is not preserved by ϕ. \qed
Theorem (3). \cong is an equivalence relation on the set \mathcal{G} of all groups.

Proof.

(1) $G \cong G$. Define $\phi : G \to G$ by $\phi(x) = x$. This is clear.

(2) Suppose $G \cong H$. If $\phi : G \to H$ is the isomorphism and, for $g \in G$, $\phi(g) = h$, then $\phi^{-1} : H \to G$ where $\phi^{-1}(h) = g$ is 1–1 and onto.

Suppose $a, b \in H$. Since ϕ is onto, $\exists \alpha, \beta \in G \ni \phi(\alpha) = a$ and $\phi(\beta) = b$. Then $\phi(\alpha\beta) = \phi(\alpha)\phi(\beta) = ab$, so

$$\phi^{-1}(ab) = \phi^{-1}(\phi(\alpha)\phi(\beta)) = \phi^{-1}(\phi(\alpha\beta)) = \alpha\beta = \phi^{-1}(\phi(\alpha))\phi^{-1}(\phi(\beta)) = \phi^{-1}(a)\phi^{-1}(b).$$

Thus ϕ^{-1} is an isomorphism and $H \cong G$.

(3) Suppose $G \cong H$ and $H \cong K$ with $\phi : G \to H$ and $\psi : H \to K$ the isomorphisms. Then $\psi\phi : G \to K$ is 1–1 and onto.

For all $a, b \in G$,

$$(\psi\phi)(ab) = \psi[\phi(ab)] = \psi[\phi(a)\phi(b)] = \psi[\phi(a)]\psi[\phi(b)] = [\psi\phi)(a)][(\psi\phi)(b)].$$

Thus $G \cong K$ and \cong is an equivalence relation on \mathcal{G}. \hfill \Box

Note. Thus, when two groups are isomorphic, they are in some sense equal. They differ in that their elements are named differently. Knowing of a computation in one group, the isomorphism allows us to perform the analogous computation in the other group.
Example (Conjugation by a). Let G be a group, $a \in G$. Define a function

$\phi_a : G \to G$ by $\phi_a(x) = axa^{-1}$.

Suppose $\phi_a(x) = \phi_a(y)$. Then $axa^{-1} = aya^{-1} \implies x = y$ by left and right cancellation. Thus ϕ_a is 1–1.

Now suppose $y \in G$. We need to find $x \in G$ s.t. $axa^{-1} = y$. But that will be so if $x = a^{-1}ya$, for then

$$\phi_a(x) = \phi_a(a^{-1}ya) = a(a^{-1}ya)a^{-1} = (aa^{-1})y(aa^{-1}) = eye = y,$$

so ϕ_a is onto.

Finally, for all $x, y \in G$,

$$\phi_a(xy) = axya^{-1} = axeya^{-1} = axa^{-1}aya^{-1} = \phi_a(x)\phi_a(y).$$

Thus ϕ_a is an isomorphism from G onto G.

Recall $U(8) = \{1, 3, 5, 7\}$. Consider ϕ_7. Since 7 is its own inverse,

$$\phi_7(1) = 7 \cdot 1 \cdot 7 = 1,$$

$$\phi_7(3) = 7 \cdot 3 \cdot 7 = 5 \cdot 7 = 3,$$

$$\phi_7(5) = 7 \cdot 5 \cdot 7 = 3 \cdot 7 = 5,$$

$$\phi_7(7) = 7 \cdot 7 \cdot 7 = 1 \cdot 7 = 7.$$

Conjugation by 7 turns out to be the identity isomorphism, which is not very interesting.
Theorem (6.1 — Cayley’s Theorem). Every group is isomorphic to a group of permutations.

Proof.
Let G be any group. [We need to find a set A and a permutation on A that forms a group \overline{G} that is isomorphic to G.] We take the set G and define, for each $g \in G$, the function $T_g : G \rightarrow G$ by $T_g(x) = gx \ \forall x \in G$.

Now $T_g(x) = T_g(y) \implies gx = gy \implies x = y$ by left cancellation, so T_g is 1–1.

Given $y \in G$, by Theorem 2 (solutions of equations) \exists a unique solution $x \in G \ni gx = y$ or $T_g(x) = y$. Thus T_g is onto and so is a permutation on G.

Now define \overline{G} by $\{T_g | g \in G\}$. For any $g, h \in G$,

$$(T_gT_h)(x) = T_g(T_h(x)) = T_g(hx) = g(hx) = (gh)(x) = T_{gh}(x) \ \forall x \in G,$$

so \overline{G} is closed under composition. Then T_e is the identity and $T_g^{-1} = T_{g^{-1}}$.

Since composition is associative, \overline{G} is a group.

Now define $\phi : G \rightarrow \overline{G}$ by $\phi(g) = T_g \ \forall g \in G$.

$$\phi(g) = \phi(h) \implies T_g = T_h \implies T_g(e) = T_h(e) \implies ge = he \implies g = h,$$

so ϕ is 1–1. ϕ is clearly onto by construction.

Finally, for $g, h \in G$,

$$\phi(gh) = T_{gh} = T_gT_h = \phi(g)\phi(h),$$

so ϕ is an isomorphism. \qed
Example. $U = \{1, 3, 5, 7\}$.

$T_1 = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 1 & 3 & 5 & 7 \end{bmatrix}, T_3 = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 3 & 1 & 7 & 5 \end{bmatrix}, T_5 = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 5 & 7 & 1 & 3 \end{bmatrix}, T_7 = \begin{bmatrix} 1 & 3 & 5 & 7 \\ 7 & 5 & 3 & 1 \end{bmatrix}$.

Then $\overline{U(8)} = \{T_1, T_3, T_5, T_7\}$.

<table>
<thead>
<tr>
<th>$U(8)$</th>
<th>1 3 5 7</th>
<th>$\overline{U(8)}$</th>
<th>T_1</th>
<th>T_3</th>
<th>T_5</th>
<th>T_7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1 3 5 7</td>
<td>T_1</td>
<td>T_1</td>
<td>T_3</td>
<td>T_5</td>
<td>T_7</td>
</tr>
<tr>
<td>3</td>
<td>3 1 7 5</td>
<td>T_3</td>
<td>T_3</td>
<td>T_1</td>
<td>T_7</td>
<td>T_5</td>
</tr>
<tr>
<td>5</td>
<td>5 7 1 3</td>
<td>T_5</td>
<td>T_5</td>
<td>T_7</td>
<td>T_1</td>
<td>T_3</td>
</tr>
<tr>
<td>7</td>
<td>7 5 3 1</td>
<td>T_7</td>
<td>T_7</td>
<td>T_5</td>
<td>T_3</td>
<td>T_1</td>
</tr>
</tbody>
</table>

Theorem (6.2 — Properties of Elements Acting on Elements). Suppose ϕ is an isomorphism from a group G onto a group \overline{G}. Then

1. $\phi(e) = \overline{e}$.
 Proof.

 $\phi(e) = \phi(ee) = \phi(e)\phi(e)$.

 Also, since $\phi(e) \in \overline{G}$, $\phi(e) = \overline{e}\phi(e) \implies \overline{e}\phi(e) = \phi(e)\phi(e) \implies \overline{e} = \phi(e)$ by right cancellation.

2. For all $n \in \mathbb{Z}$ and for all $a \in G$, $\phi(a^n) = [\phi(a)]^n$.
 Proof.

 For $n \in \mathbb{Z}$, $n \geq 0$, $\phi(a^n) = [\phi(a)]^n$ from the definition of an isomorphism and induction. For $n < 0$, $-n > 0$, so

 $\overline{e} = \phi(e) = \phi(a^n a^{-n}) = \phi(a^n)\phi(a^{-n}) = \phi(a^n)[\phi(a)]^{-n} \implies [\phi(a)]^n = \phi(a^n)$.

3. For all $a, b \in G$, $ab = ba \iff \phi(a)\phi(b) = \phi(b)\phi(a)$.
 Proof.

 $ab = ba \iff \phi(ab) = \phi(ba) \iff \phi(a)\phi(b) = \phi(b)\phi(a)$.
(4) \(G = \langle a \rangle \iff \overline{G} = \langle \phi(a) \rangle \).

Proof.

Let \(G = \langle a \rangle \). By closure, \(\langle \phi(a) \rangle \subseteq \overline{G} \). Since \(\phi \) is onto, for any element \(b \in \overline{G} \), \(\exists a^k \in G \implies \phi(a^k) = b \). Thus \(b = \left[\phi(a)^k \right] \implies b \in \langle \phi(a) \rangle \). Thus \(\overline{G} = \langle \phi(a) \rangle \).

Now suppose \(\overline{G} = \langle \phi(a) \rangle \). Clearly, \(\langle a \rangle \subseteq G \). For all \(b \in G \), \(\phi(b) \in \langle \phi(a) \rangle \).

Thus \(\exists k \in \mathbb{Z} \implies \phi(b) = \phi(a)^k = \phi(a^k) \). Since \(\phi \) is 1–1, \(b = a^k \). Thus \(\langle a \rangle = G \). \(\square \)

(5) \(|a| = |\phi(a)| \forall a \in G \) (Isomorphisms preserve order).

Proof.

\[a^n = e \iff \phi(a^n) = \phi(e) \iff [\phi(a)]^n = e. \]

Thus \(a \) has infinite order \iff \(\phi(a) \) has infinite order, and \(a \) has finite order \(n \iff \phi(a) \) has infinite order \(n \). \(\square \)

(6) For a fixed integer \(k \) and a fixed \(b \in G \), \(x^k = b \) has the same number of solutions in \(G \) as does \(x^k = \phi(b) \) in \(\overline{G} \).

Proof.

Suppose \(a \) is a solution of \(x^k = b \) in \(G \), i.e., \(a^k = b \). Then

\[\phi(a^k) = \phi(b) \implies [\phi(a)]^k = \phi(b), \]

so \(\phi(a) \) is a solution of \(x^k = \phi(b) \) in \(\overline{G} \).

Now suppose \(y \) is a solution of \(x^k = \phi(b) \) in \(\overline{G} \). Since \(\phi \) is onto, \(\exists a \in G \implies \phi(a) = y \). Then

\[[\phi(a)]^k = \phi(b) \iff \phi(a^k) = \phi(b) \implies a^k = b \]

since \(\phi \) is 1–1. Thus \(a \) is a solution of \(x^k = b \) in \(G \).

Therefore, there exists a 1–1 correspondence between the sets of solutions. \(\square \)

(7) If \(G \) is finite, then \(G \) and \(\overline{G} \) have exactly the same number of elements of every order.

Proof. Follows directly from property (5). \(\square \)
Example. Is $\mathbb{C}^* \cong \mathbb{R}^*$ with multiplication the operation of both groups? Solution. $x^2 = -1$ has 2 solutions in \mathbb{C}^*, but none in \mathbb{R}^*, so by Theorem 6.2(6) no isomorphism can exist. \(\square\)

Theorem (6.3 — Properties of Isomorphisms Acting on Groups). Suppose that ϕ is an isomorphism from a group G onto a group \overline{G}. Then

(1) ϕ^{-1} is an isomorphism from \overline{G} onto G.

Proof. The inverse of ϕ is 1–1 since ϕ is. Let $g \in G$. $\phi^{-1}(\phi(g)) = g \implies \phi$ is onto. Now let $x, y \in \overline{G}$. Then

$$\phi^{-1}(xy) = \phi^{-1}(x)\phi^{-1}(y) \iff \phi(\phi^{-1}(xy)) = \phi(\phi^{-1}(x)\phi^{-1}(y)) \iff xy = \phi(\phi^{-1}(x))\phi(\phi^{-1}(y)) = xy.$$

Thus operations are preserved and ϕ^{-1} is an isomorphism. \(\square\)

(2) G is Abelian $\iff \overline{G}$ is Abelian.

Proof. Follows directly from Theorem 6.2(3) since isomorphisms preserve commutivity. \(\square\)

(3) G is cyclic $\iff \overline{G}$ is cyclic.

Proof. Follows directly from Theorem 6.2(4) since isomorphisms preserve order. \(\square\)
(4) If $K \leq G$, then $\phi(K) = \{\phi(k) \mid k \in K\} \leq \overline{G}$.

Proof.

Follows directly from Theorem 6.2(4) since isomorphisms preserve order. \hfill \Box

(5) If $\overline{K} \leq \overline{G}$, then $\phi^{-1}(\overline{K}) = \{g \in G \mid \phi(g) \in \overline{K}\} \leq G$.

Proof.

Follows directly from (1) and (4). \hfill \Box

(6) $\phi(Z(G)) = Z(\overline{G})$.

Proof.

Follows directly from Theorem 6.2(3) since isomorphisms preserve commutivity. \hfill \Box

Definition (Automorphism). An isomorphisms from a group G onto itself is called an automorphism.

Problem (Psge 140 # 35). Show that the mapping $\phi(a + bi) = a - bi$ is an automorphism of \mathbb{C} under addition. Show that ϕ preserves complex multiplication as well. (This means ϕ is an automorphisms of \mathbb{C}^* as well.)

Solution.

ϕ is clearly 1–1 and onto. Suppose $a + bi, c + di \in \mathbb{C}$.

$\phi[(a + bi) + (c + di)] = \phi[(a + c) + (b + d)i] = (a + c) - (b + d)i$

$ = \phi(a + bi) + \phi(c + di)$,

so ϕ is an automorphism of \mathbb{C} under addition.

Now suppose $a + bi, c + di \in \mathbb{C}^*$.

$\phi[(a + bi)(c + di)] = \phi[(ac - bd) + (ad + bc)i] = (ac - bd) - (ad + bc)i$

$ = \phi(a - bi)(c - di) = \phi(a + bi)\phi(c + di)$,

so ϕ is an automorphism of \mathbb{C}^* under multiplication. \hfill \Box
6. ISOMORPHISMS

Example (related to Example 10 on Page 135). Consider \mathbb{R}^2. Any reflection across a line through the origin or rotation about the origin is an automorphism under componentwise addition. For example, consider the reflection about the line $y = 2x$.

Consider (a, b) not on $y = 2x$. The line through $(a, b) \perp y = 2x$ is $y - b = -\frac{1}{2}(x - a)$. To find P (using substitution):

$$2x - b = -\frac{1}{2}(x - a) \implies \frac{5}{2}x = \frac{1}{2}a + b \implies x = \frac{1}{5}a + \frac{2}{5}b \implies y = \frac{2}{5}a + \frac{4}{5}b.$$

Thus the direction vector $\mathbf{v} = P - (a, b)$ takes (a, b) to P.

$$\mathbf{v} = \left(-\frac{4}{5}a + \frac{2}{5}b, \frac{2}{5}a - \frac{1}{5}b \right).$$

Define $\phi(a, b) = (b, a)$.

ϕ is clearly 1–1 and onto.
Finally,
\[
\phi \left[(a, b) + (c, d) \right] = \phi(a + c, b + d) = (b + d, a + c) = (b, a) + (d, c) = \phi(a, b) + \phi(c, d),
\]
so \(\phi \) is an isomorphism.

Definition (Inner Automorphism Induced by \(a \)).

Let \(G \) be a group, \(a \in G \). The function \(\phi_a \) defined by \(\phi_a(x) = axa^{-1} \forall x \in G \) is called the **inner automorphism** of \(G \) induced by \(a \).

Example. The action of the inner automorphism of \(D_4 \) induced by \(R_{90} \) is given in the following table.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\phi_{R_{90}})</th>
<th>(R_{90} x R_{90}^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R_0)</td>
<td>(\rightarrow)</td>
<td>(R_{90}R_0R_{90}^{-1} = R_0)</td>
</tr>
<tr>
<td>(R_{90})</td>
<td>(\rightarrow)</td>
<td>(R_{90}R_{90}R_{90}^{-1} = R_{90})</td>
</tr>
<tr>
<td>(R_{180})</td>
<td>(\rightarrow)</td>
<td>(R_{90}R_{180}R_{90}^{-1} = R_{180})</td>
</tr>
<tr>
<td>(R_{270})</td>
<td>(\rightarrow)</td>
<td>(R_{90}R_{270}R_{90}^{-1} = R_{270})</td>
</tr>
<tr>
<td>(H)</td>
<td>(\rightarrow)</td>
<td>(R_{90}HR_{90}^{-1} = V)</td>
</tr>
<tr>
<td>(V)</td>
<td>(\rightarrow)</td>
<td>(R_{90}VR_{90}^{-1} = H)</td>
</tr>
<tr>
<td>(D)</td>
<td>(\rightarrow)</td>
<td>(R_{90}DR_{90}^{-1} = D')</td>
</tr>
<tr>
<td>(D')</td>
<td>(\rightarrow)</td>
<td>(R_{90}D'R_{90}^{-1} = D)</td>
</tr>
</tbody>
</table>
Problem (Page 145 # 45). Suppose g and h induce the same inner automorphism of a group G. Prove $h^{-1}g \in Z(G)$.

Proof. Let $x \in G$. Then

$$\phi_g(x) = \phi_h(x) \implies gxg^{-1} = hxh^{-1} \implies h^{-1}gxg^{-1}h = x \implies (h^{-1}g)x(h^{-1}g)^{-1}h = x \implies (h^{-1}g)x = x(h^{-1}g) \implies h^{-1}g \in Z(G)$$ since x is arbitrary.

Definition.

$\text{Aut}(G) = \{ \phi \mid \phi \text{ is an automorphism of } G \}$ and

$\text{Inn}(G) = \{ \phi \mid \phi \text{ is an inner automorphism of } G \}$.

Theorem (6.4 — $\text{Aut}(G)$ and $\text{Inn}(G)$ are groups).

$\text{Aut}(G)$ and $\text{Inn}(G)$ are groups under function composition.

Proof.

From the transitive portion of Theorem 3, compositions of isomorphisms are isomorphisms. Thus $\text{Aut}(G)$ is closed under composition. We know function composition is associative and that the identity map is the identity automorphism.

Suppose $\alpha \in \text{Aut}(G)$. α^{-1} is clearly 1–1 and onto. Now

$$\alpha^{-1}(xy) = \alpha^{-1}(x)\alpha^{-1}(y) \iff (\iff \text{ by 1–1})$$

$$\alpha[\alpha^{-1}(xy)] = \alpha[\alpha^{-1}(x)\alpha^{-1}(y)] \iff xy = \alpha[\alpha^{-1}(x)]\alpha[\alpha^{-1}(y)] \iff xy = xy.$$

Thus α^{-1} is operation preserving, and $\text{Aut}(G)$ is a group.
Now let \(\phi_g, \phi_h \in \text{Inn}(G) \subseteq \text{Aut}(G) \). For all \(x \in G \),
\[
\phi_g \phi_h(x) = \phi_g(hxh^{-1}) = ghxh^{-1}g^{-1} = (gh)x(gh)^{-1} = \phi_{gh}(x),
\]
so \(\phi_{gh} = \phi_g \phi_h \in \text{Inn}(G) \), and \(\text{Inn}(G) \) is closed under composition.

Also, \(\phi_g^{-1} = \phi_{g^{-1}} \) since
\[
\phi_{g^{-1}} \phi_g(x) = \phi_{g^{-1}}(gxg^{-1}) = g^{-1}gxg^{-1}(g^{-1})^{-1} = g^{-1}gxg^{-1}g = exe = \phi_e(x),
\]
and so also \(\phi_{gg^{-1}} = \phi_e \). Thus \(\text{Inn}(G) \subseteq \text{Aut}(G) \) by the two-step test. \(\square \)

Example. Find \(\text{Inn}(\mathbb{Z}_{12}) \).

Solution.
Since \(\mathbb{Z}_{12} = \{0, 1, 2, \ldots, 11\} \), \(\text{Inn}(\mathbb{Z}_{12}) = \{\phi_0, \phi_1, \phi_2, \ldots, \phi_{11}\} \), but the second list may have duplicates. That is the case here. For all \(n \in \mathbb{Z}_{12} \) and for all \(x \in \mathbb{Z}_{12} \),
\[
\phi_n(x) = n + x + (-n) = n + (-n) + x = 0 + x = 0 + x + 0 = \phi_0(x),
\]
the identity automorphism. Thus \(\text{Inn}(\mathbb{Z}_{12}) = \{\phi_0\} \). \(\square \)
Example. Find $\text{Inn}(D_3)$.

Solution.

$D_3 = \{\varepsilon, (1\ 2\ 3), (1\ 3\ 2), (2\ 3), (1\ 3), (1\ 2)\}$ as permutations. Then $\text{Inn}(D_3) = \{\phi_\varepsilon, \phi_{(1\ 2\ 3)}, \phi_{(1\ 3\ 2)}, \phi_{(2\ 3)}, \phi_{(1\ 3)}, \phi_{(1\ 2)}\}$, but we need to eliminate repetitions.

$\phi_{(1\ 2\ 3)}(1\ 2\ 3) = (1\ 2\ 3)(1\ 2\ 3)(3\ 2\ 1) = (1\ 2\ 3)$.

$\phi_{(1\ 2\ 3)}(1\ 3\ 2) = (1\ 3\ 2)(1\ 2\ 3)(3\ 2\ 1) = (1\ 3\ 2)$.

$\phi_{(1\ 2\ 3)}(2\ 3) = (1\ 3\ 2)(2\ 3)(3\ 2\ 1) = (1\ 3)$.

$\phi_{(1\ 2\ 3)}(1\ 3) = (1\ 3\ 2)(1\ 3)(3\ 2\ 1) = (1\ 2)$.

$\phi_{(1\ 2\ 3)}(1\ 2) = (1\ 3\ 2)(1\ 2)(3\ 2\ 1) = (2\ 3)$. Thus $\phi_{(1\ 2\ 3)}$ is distinct from ϕ_ε.

$\phi_{(1\ 3\ 2)}(2\ 3) = (1\ 3\ 2)(2\ 3)(2\ 3\ 1) = (1\ 2)$. Thus $\phi_{(1\ 3\ 2)}$ is distinct.

$\phi_{(2\ 3)}(2\ 3) = (2\ 3)(2\ 3)(2\ 3) = (2\ 3)$.

$\phi_{(2\ 3)}(1\ 3) = (2\ 3)(1\ 3)(2\ 3) = (1\ 2)$. Thus $\phi_{(2\ 3)}$ is distinct.

$\phi_{(1\ 3)}(2\ 3) = (1\ 3)(2\ 3)(1\ 3) = (1\ 2)$.

$\phi_{(1\ 3)}(1\ 3) = (1\ 3)(1\ 3)(1\ 3) = (1\ 3)$.

$\phi_{(1\ 3\ 2)}(1\ 3) = (1\ 3\ 2)(1\ 3)(2\ 3\ 1) = (2\ 3)$. Thus $\phi_{(1\ 3)}$ is distinct.

$\phi_{(1\ 2)}(2\ 3) = (1\ 2)(2\ 3)(1\ 2) = (1\ 3)$.

$\phi_{(1\ 2)}(1\ 3) = (1\ 2)(1\ 3)(1\ 2) = (2\ 3)$. Thus $\phi_{(1\ 2)}$ is distinct.

Therefore, there are no duplicates and $\text{Inn}(D_3) = \{\phi_\varepsilon, \phi_{(1\ 2\ 3)}, \phi_{(1\ 3\ 2)}, \phi_{(2\ 3)}, \phi_{(1\ 3)}, \phi_{(1\ 2)}\}$.

□
Theorem (6.5 – Aut(\(\mathbb{Z}_n\)) = U(n)). For all \(n \in \mathbb{N}\), Aut(\(\mathbb{Z}_n\)) = U(n).

Proof.

Let \(\alpha \in \text{Aut}(\mathbb{Z}_n)\). Then

\[
\alpha(k) = \alpha(1 + 1 + \cdots + 1) = (\alpha(1) + \alpha(1) + \cdots + \alpha(1)) = k\alpha(1).
\]

Now \(|1| = n \implies |\alpha(1)| = n\), so \(\alpha(1)\) is a generator of \(\mathbb{Z}_n\) since \(1\) is also a generator. Now consider

\[
T : \text{Aut}(\mathbb{Z}_n) \to U(n) \quad \text{where} \quad T(\alpha) = \alpha(1).
\]

Suppose \(\alpha, \beta \in \text{Aut}(\mathbb{Z}_n)\) and \(T(\alpha) = T(\beta)\). Then \(\alpha(1) = \beta(1)\), so \(\forall k \in \mathbb{Z}_n\), \(\alpha(k) = k\alpha(1) = k\beta(1) = \beta(k)\). Thus \(\alpha = \beta\) and \(T\) is 1–1.

[To show \(T\) is onto.] Now suppose \(r \in U(n)\) and consider \(\alpha : \mathbb{Z}_n \to \mathbb{Z}_n\) defined by \(\alpha(s) = sr \mod n \quad \forall s \in \mathbb{Z}_n\).

[To show \(\alpha \in \text{Aut}(\mathbb{Z}_n)\).] Suppose \(\alpha(x) = \alpha(y)\). Then \(xr = yr \mod n\).

But \(r^{-1}\) exists modulo \(n\) \(\implies xr^{-1} = yr^{-1} \mod n \implies x \cdot 1 = y \cdot 1 \mod n \implies x = y \mod n\), so \(\alpha\) is 1–1.

Suppose \(x \in \mathbb{Z}_n\). By Theorem 2, \(\exists s \in \mathbb{Z}_n \ni \alpha(s) = sr = x\), so \(\alpha\) is onto.

Now suppose \(x, y \in \mathbb{Z}_n\).

\[
\alpha(x + y) = (x + y)r \mod n = (xr + yr) \mod n = xr \mod n + yr \mod n = \alpha(x) + \alpha(y),
\]

so \(\alpha \in \text{Aut}(\mathbb{Z}_n)\).

Since \(T(\alpha) = \alpha(1) = r\), \(T\) is onto.
Finally, let $\alpha, \beta \in \text{Aut}(\mathbb{Z}_n)$. Then
\[
T(\alpha \beta) = (\alpha \beta)(1) = \alpha[\beta(1)] = \alpha(1 + 1 + \cdots + 1)_\beta(1) \text{ terms}
\]
\[
\underbrace{\alpha(1) + \alpha(1) + \cdots + \alpha(1)}_{\beta(1) \text{ terms}} = \alpha(1)\beta(1) = T(\alpha)T(\beta),
\]
so $\text{Aut}(\mathbb{Z}_n) \approx U(n)$.

Example. $\text{Aut}(\mathbb{Z}_{10}) \approx U(10)$. The multiplication tables for the two groups are given below:

<table>
<thead>
<tr>
<th>$U(10)$</th>
<th>1</th>
<th>3</th>
<th>7</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>3</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>1</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{Aut}(\mathbb{Z}_{10})$</th>
<th>α_1</th>
<th>α_3</th>
<th>α_7</th>
<th>α_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_1</td>
<td>α_1</td>
<td>α_3</td>
<td>α_7</td>
<td>α_9</td>
</tr>
<tr>
<td>α_3</td>
<td>α_3</td>
<td>α_9</td>
<td>α_1</td>
<td>α_7</td>
</tr>
<tr>
<td>α_7</td>
<td>α_7</td>
<td>α_1</td>
<td>α_9</td>
<td>α_3</td>
</tr>
<tr>
<td>α_9</td>
<td>α_9</td>
<td>α_7</td>
<td>α_3</td>
<td>α_1</td>
</tr>
</tbody>
</table>

The isomorphism is clear.