CHAPTER 14

Vector Calculus

1. Vector Fields

DEFINITION. A vector field in the plane is a function \(\mathbf{F}(x, y) \) from \(\mathbb{R}^2 \) into \(V_2 \). We write
\[
\mathbf{F}(x, y) = \langle f_1(x, y), f_2(x, y) \rangle = f_1(x, y)\mathbf{i} + f_2(x, y)\mathbf{j}.
\]
A vector field in space is a function \(\mathbf{F}(x, y, z) \) from \(\mathbb{R}^3 \) into \(V_3 \), We write
\[
\mathbf{F}(x, y, z) = \langle f_1(x, y, z), f_2(x, y, z), f_3(x, y, z) \rangle = f_1(x, y, z)\mathbf{i} + f_2(x, y, z)\mathbf{j} + f_3(x, y, z)\mathbf{k}.
\]

EXAMPLE. \(\mathbf{F}(x, y) = \langle -y, x \rangle = -y\mathbf{i} + x\mathbf{j} \)

Some values:
\[
\mathbf{F}(0, 1) = \langle -1, 0 \rangle = -\mathbf{i} \implies \|\mathbf{F}(0, 1)\| = 1.
\]
\[
\mathbf{F}(-1, -1) = \langle 1, -1 \rangle = \mathbf{i} - \mathbf{j} \implies \|\mathbf{F}(-1, -1)\| = \sqrt{2}.
\]
In general,
\[
\|\mathbf{F}(x, y)\| = \|\langle -y, x \rangle\| = \sqrt{x^2 + y^2}.
\]
The diagram on the left on the previous page is drawn to scale, with $\mathbf{F}(x, y)$ placed at (x, y). The diagram on the right is scaled smaller with relative magnitudes to fit in the diagram.

This vector field could be called a “spin” field. Since

$$\langle x, y \rangle \cdot \langle -y, x \rangle = -xy + xy = 0,$$

each $\mathbf{F}(x, y)$ is tangent to the circle centered at the origin of radius $\sqrt{x^2 + y^2}$, pointing in a counter-clockwise direction with magnitude equalling the radius of the circle.
Sample vector fields:

1. $xi + yj$

Each vector has magnitude equal to the distance from its base to the origin.

2. $yi - xj$

Tangent to circles of radius $\sqrt{x^2 + y^2}$, clockwise magnitude = radians.

3. $\frac{xi + yj}{(x^2 + y^2)^{1/2}}$

Same as above, except each vector is a unit vector.

4. $y^2 i + x^2 j$

Point on x-axis, vector points up; point on y-axis, vector points right; elsewhere, vector points to some point in 1st quadrant.
More examples of scaled and unscaled vector fields:

1. \(\mathbf{F}(x, y) = x \mathbf{i} + x^2 \mathbf{j} \)

Scaled

Unscaled

2. \(\mathbf{F}(x, y) = x^2 \mathbf{i} + y^2 \mathbf{j} \)

Scaled

Unscaled

3. \(\mathbf{F}(x, y) = -y \mathbf{i} - x \mathbf{j} \)

Scaled

Unscaled

Motion above \(y \)-axis is to the right, below to the left.

Motion to right of \(y \)-axis is downward, to the left upward.

Right

Left
Some vector fields are velocity vector fields, i.e., $\mathbf{F}(x, y)$ gives the velocity of a particle at (x, y). Suppose a particle starts to flow at (x_0, y_0) at time t_0. Then the curve traced out by $\langle x(t), y(t) \rangle$, where $x(t)$ and $y(t)$ are solutions of the differential equations

$$x'(t) = f_1 (x(t), y(t)) \quad \text{and} \quad y'(t) = f_2 (x(t), y(t))$$

with initial conditions $x(t_0) = x_0$ and $y(t_0) = y_0$, is a flow line.

![Vector field with a flow line through (1, 2)](image)

We use the chain rule to find a differential equation for y as a function of x for the velocity vector field:

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{y'(t)}{x'(t)} = \frac{f_2 (x, y)}{f_1 (x, y)}.$$

In our example,

$$\frac{dy}{dx} = \frac{4}{3} \implies y = \frac{4}{3}x + C.$$

For the flow line through $(1, 2)$, $2 = \frac{4}{3} + C \implies C = \frac{2}{3}$. Thus $y = \frac{4}{3}x + \frac{2}{3}$ is the equation of the flow line.
Example. We consider the vector field $\mathbf{F}(x, y) = \langle 1, x \rangle$ and the flow line through $(-2, 2)$.

This is a velocity vector field for $\frac{dy}{dx} = \frac{x}{1} = x$. Then $y = \frac{1}{2}x^2 + C$. For the flow line through $(-2, 2)$, $2 = 2 + C \implies C = 0$. Thus the equation of the flow line is $y = \frac{1}{2}x^2$.

Definition. For any scalar function f (from \mathbb{R}^2 or \mathbb{R}^3 to \mathbb{R}), the vector field $\mathbf{F}(x, y) = \nabla f$ is called the gradient field for the function f. We call f a potential function for \mathbf{F}. Whenever $\mathbf{F} = \nabla f$ for some scalar function f, we refer to \mathbf{F} as a conservative vector field.
Gradient Fields and Level Curves

Compute the gradient fields for the following functions, and draw level curves \(f(x, y) = k \) for the indicated values of \(k \). Then sketch the gradient vector field at one or two points on each of these level curves.

1. \(f(x, y) = \frac{x^2}{4} + \frac{y^2}{9}; k = 1, 2, 4 \)

\[\nabla f(x, y) = \left(\frac{x}{2}, \frac{y}{3} \right) \]

\[\frac{x^2}{4} + \frac{y^2}{9} = k \]

- \(k = 1 \):
 \[\frac{x^2}{4} + \frac{y^2}{9} = 1 \]
- \(k = 2 \):
 \[\frac{x^2}{8} + \frac{y^2}{18} = 1 \]
- \(k = 4 \):
 \[\frac{x^2}{16} + \frac{y^2}{36} = 1 \]

2. \(f(x, y) = \frac{y}{x+y}; y \neq -x; k = \frac{1}{2}, \frac{3}{4}, 2 \)

\[\nabla f(x, y) = \left(-\frac{y}{(x+y)^2}, \frac{x}{(x+y)^2} \right) \]

\[\frac{y}{x+y} = k \]

- \(k = \frac{1}{2} \):
 \[y = x \]
- \(k = \frac{3}{4} \):
 \[y = 3x \]
- \(k = 2 \):
 \[y = -x \]

In general, the further from the origin, the shorter the vector.
Problem (Page 996 #36). Determine whether

\[\mathbf{F}(x, y) = \langle y \cos x, \sin x - y \rangle \]

is conservative, and if so, find its potential function.

(We proceed in a manner different from the text.) This is the same as determining whether

\[M = f_x = y \cos x \quad N = f_y = \sin x - y \]

is exact and finding its solution as we did in Math 231.

\[M_y = \cos x \quad N_x = \cos x \quad \rightarrow \quad M_y = N_x \quad \rightarrow \]

the DE is exact \(\quad \rightarrow \quad \mathbf{F} \) is conservative.

\[f(x, y) = \int y \cos x \, dx \quad f(x, y) = \int (\sin x - y) \, dy \]

\[= y \sin x + g(y) \quad = y \sin x - \frac{y^2}{2} + h(x) \]

\[f_y(x, y) = \sin x + g'(y) \quad f_x(x, y) = y \cos x + h'(x) \]

\[= \sin x - y \quad \rightarrow \quad = y \cos x \quad \rightarrow \]

\[g'(y) = -y \quad \rightarrow \quad g(y) = -\frac{y^2}{2} + C \quad h'(x) = 0 \quad \rightarrow \quad h(x) = C \]

Thus

\[f(x, y) = y \sin x - \frac{y^2}{2} + C \]

2. Line Integrals

Oriented curve — one from which we have chosen a direction — two possible directions.

Definition. The line integral of \(f(x, y, z) \) with respect to arc length along the oriented curve \(C \) in three-dimensional space, written \(\int_C f(x, y, z) \, ds \), is defined by

\[
\int_C f(x, y, z) \, ds = \lim_{\|P\| \to 0} \sum_{i=1}^{n} f(x_i^*, y_i^*, z_i^*) \Delta s_i,
\]

provided the limit exists and is the same for all choices of evaluation points.

Note. There is a similar definition for two dimensions.
Theorem (Evaluation Theorem). Suppose that \(f(x, y, z) \) is continuous in a region \(D \) containing the curve \(C \) and that \(C \) is described parametrically by \((x(t), y(t), z(t))\) for \(a \leq t \leq b \) where \(x(t) \), \(y(t) \), and \(z(t) \) all have continuous first derivatives. Then

\[
\int_{C} f(x, y, z) \, ds = \int_{a}^{b} f(x(t), y(t), z(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2} \, dt.
\]

In the two-dimensional case,

\[
\int_{C} f(x, y) \, ds = \int_{a}^{b} f(x(t), y(t)) \sqrt{[x'(t)]^2 + [y'(t)]^2} \, dt.
\]

Definition. A space curve \(C \) is smooth if it can be described parametrically by \(x = x(t) \), \(y = y(t) \), and \(z = z(t) \) for \(a \leq t \leq b \), where \(x(t) \), \(y(t) \), and \(z(t) \) all have continuous first derivatives and \([x'(t)]^2 + [y'(t)]^2 + [z'(t)]^2 \neq 0\) on \([a, b]\). (Similarly for plane curves.)

Example. Find \(\int_{C} 3y^2 \, ds \) where \(C \) is the quarter-circle \(x^2 + y^2 = 4 \) from \((0, 2)\) to \((-2, 0)\).

\[
x = 2 \cos t \implies x'(t) = -2 \sin t \quad \text{and} \quad y = 2 \sin t \implies y'(t) = 2 \cos t.
\]

\[
\int_{C} 3y^2 \, ds = \int_{\pi/2}^{\pi} [3(4 \sin^2 t)] \sqrt{4 \sin^2 t + 4 \cos^2 t} \, dt = 24 \int_{\pi/2}^{\pi} \sin^2 t \, dt = 12 \int_{\pi/2}^{\pi} (1 - \cos 2t) \, dt = 12 \left[t - \frac{1}{2} \sin 2t \right]_{\pi/2}^{\pi} = 12 \left[(\pi - 0) - \left(\frac{\pi}{2} - 0 \right) \right] = 6\pi.
\]
Problem (Page 1010 # 4). Find $\int_C xz\,ds$, where C is the line segment from $(2, 1, 0)$ to $(2, 0, 2)$.

$x = 2$, and for $0 \leq t \leq 1$,

$$y = 1 - t, \quad z = 2t \implies x'(t) = 0, \quad y'(t) = -1, \quad z'(t) = 2.$$

$$ds = \sqrt{0^2 + (-1)^2 + 2^2} \, dt = \sqrt{5} \, dt$$

Thus

$$\int_C xz \, ds = \int_0^1 2(2t)\sqrt{5} \, dt = 4\sqrt{5} \int_0^1 t \, dt = 4\sqrt{5} \left[\frac{t^2}{2} \right]_0^1 = 4\sqrt{5} \left(\frac{1}{2} - 0 \right) = 2\sqrt{5}.$$

Theorem. Suppose $f(x, y, z)$ is a continuous function in some region D containing the oriented curve C. Then, if C is piecewise smooth, with $C = C_1 \cup C_2 \cup \cdots \cup C_n$, where C_1, C_2, \ldots, C_n are all smooth and where the terminal point of C_i is the same as the initial point of C_{i+1}, for $i = 1, 2, \ldots, n - 1$, we have

$$\int_{-C} f(x, y, z) \, ds = \int_C f(x, y, z) \, ds$$

and

$$\int_C f(x, y, z) \, ds = \int_{C_1} f(x, y, z) \, ds + \int_{C_2} f(x, y, z) \, ds + \cdots + \int_{C_n} f(x, y, z) \, ds.$$

Note. There is a similar statement for two dimensions.
Example. Find $\int_C (x + y) \, ds$ over $C = C_1 \cup C_2$ where C_1 is the quarter circle from $(1, 0)$ to $(0, 1)$ and C_2 is the line segment from $(0, 1)$ to $(-1, 0)$.

\[C_1: \, x(t) = \cos t, \, y(t) = \sin t, \, 0 \leq t \leq \frac{\pi}{2} \implies x'(t) = -\sin t, \, y'(t) = \cos t. \]

\[C_2: \, x(t) = -t, \, y(t) = 1 - t, \, 0 \leq t \leq 1, \, x'(t) = -1, \, y'(t) = -1. \]

Thus
\[
\int_C (x + y) \, ds = \int_{C_1} (x + y) \, ds + \int_{C_2} (x + y) \, ds = \\
\int_0^{\pi/2} (\cos t + \sin t) \sqrt{(-\sin t)^2 + (\cos t)^2} \, dt + \int_0^1 \left[-t + (1 - t) \right] \sqrt{(-1)^2 + (-1)^2} \, dt = \\
\int_0^{\pi/2} (\cos t + \sin t) \, dt + \sqrt{2} \int_0^1 (1 - 2t) \, dt = \\
\left[\sin t - \cos t \right]_0^{\pi/2} + \sqrt{2} \left[t - t^2 \right]_0^1 = 1 + 1 + \sqrt{2}(0 - 0) = 2.
\]

Theorem. For any piecewise smooth curve C (in two or three dimensions), $\int_C 1 \, ds$ gives the arc length of the curve C.
Line integrals with respect to x

\[\int_C f(x, y, z) \, dx = \lim_{\|p\| \to 0} \sum_{i=1}^{n} f(x_i^*, y_i^*, z_i^*) \Delta x_i \]

\[\int_{-C} f(x, y, z) \, dx = - \int_C f(x, y, z) \, dx \]

\[\int_C f(x, y, z) \, dx = \int_{C_1} f(x, y, z) \, dx + \int_{C_2} f(x, y, z) \, dx + \cdots + \int_{C_n} f(x, y, z) \, dx \]

Note. We have similar results for y and z and two dimensions.

Notation. We write

\[\int_C f(x, y, z) \, dx + \int_C g(x, y, z) \, dy + \int_C h(x, y, z) \, dz = \int_C f(x, y, z) \, dx + g(x, y, z) \, dy + h(x, y, z) \, dz \]

Example. Find $\int_C 3y^2 \, dy$ where C is the line segment from $(2, 0)$ to $(1, 3)$.

Parameterize the line by $x = 2 - t, y = 3t, 0 \leq t \leq 1$. Then $dy = 3 \, dt$ and

\[\int_C 3y^2 \, dy = \int_0^1 3(3t)^2(3dt) = 81 \int_0^1 t^2 \, dt = 27t^3 \bigg|_0^1 = 27. \]
Example. Find $\int_C 3y^2\, dy$ where C is the portion of $y = x^2$ from $(2, 4)$ to $(0, 0)$.

1) Parameterize by $x = -t, y = t^2$ from $-2 \leq t \leq 0$. Then $dy = 2t\, dt$ and

$$\int_C 3y^2\, dy = \int_{-2}^{0} 3t^4(2t)\, dt = 6 \int_{-2}^{0} t^5\, dt = t^6\bigg|_{-2}^{0} = 0 - (-2)^6 = -64$$

2) Could also parameterize by $x = 2 - t, y = (2 - t)^2$ from $0 \leq t \leq 2$. Then $dy = -2(2 - t)\, dt$ and

$$\int_C 3y^2\, dy = \int_{0}^{2} 3(2 - t)^4(-2)(2 - t)\, dt =$$

$$-6 \int_{0}^{2} (2 - t)^5\, dt = (2 - t)^6\bigg|_{0}^{2} = 0 - 64 = -64.$$

Line Integrals of Vector Fields

Let $\mathbf{F}(x, y, z) = \langle F_1(x, y, z), F_2(x, y, z), F_3(x, y, z) \rangle$ be a vector field along the curve C defined by $x = x(t), y = y(t),$ and $z = z(t), a \leq t \leq b.$ Let

$$\mathbf{r} = \langle x, y, z \rangle \implies d\mathbf{r} = \langle dx, dy, dz \rangle.$$

Define the line integral

$$\int_C \mathbf{F}(x, y, z) \cdot d\mathbf{r} = \int_C F_1(x, y, z)\, dx + F_2(x, y, z)\, dy + F_3(x, y, z)\, dz =$$

$$\int_C F_1(x, y, z)\, dx + \int_C F_2(x, y, z)\, dy + \int_C F_3(x, y, z)\, dz$$

Work

If $\mathbf{F}(x, y, z)$ is a force field, the work done by \mathbf{F} in moving a particle along the curve C can be written as

$$W = \int_C \mathbf{F}(x, y, z) \cdot d\mathbf{r}.$$
Example. Find the work done by \(\mathbf{F}(x, y, z) = \langle z, 0, 3x^2 \rangle \) along \(C \), the quarter ellipse given by \(x = 2 \cos t, \ y = 3 \sin t, \ z = 1 \), from \((2, 0, 1) \) to \((0, 3, 1) \).

We have

\[
0 \leq t \leq \frac{\pi}{2}, \quad dx = -2 \sin t \, dt, \quad dy = 3 \cos t \, dt, \quad dz = 0.
\]

\[
\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C z \, dx + 0 \, dy + F_3(x, y, z) \, dz = \int_0^{\pi/2} \left[(1)(-2 \sin t) + 0(3 \cos t) + 3(4 \cos^2 t)(0) \right] \, dt = 2 \cos t \bigg|_{0}^{\pi/2} = 0 - 2 = -2.
\]

- Consider the vector field \(\mathbf{F}(x, y) \) and the curves \(C_1 \) and \(C_2 \) shown below. Explain why \(\int_{C_1} \mathbf{F} \cdot d\mathbf{r} > 0 \) and \(\int_{C_2} \mathbf{F} \cdot d\mathbf{r} < 0 \).

- Explain why \(\int_C \mathbf{F} \cdot d\mathbf{r} > 0 \) and \(\int_C \mathbf{G} \cdot d\mathbf{r} < 0 \) in the diagram below.

Recall \(\mathbf{F} \cdot d\mathbf{r} = \|\mathbf{F}\| \cdot \|d\mathbf{r}\| \cos \theta \), where \(\theta \) is the angle between \(\mathbf{F} \) and \(d\mathbf{r} \), \(0 \leq \theta \leq \pi \). Thus the line integral of a vector field measures the extent to which \(C \) is going with the vector field (+) or against it (−).
Using the diagram below, arrange $\int_{C_i} \mathbf{F} \cdot d\mathbf{r}$, $i = 1 \ldots 4$, and the number 0 in order from left to right (smallest to largest).

\[
\mathbf{F}(x, y) = -y\mathbf{i} + x\mathbf{j}
\]

\[
\int_{C_2} \mathbf{F} \cdot d\mathbf{r} < \int_{C_1} \mathbf{F} \cdot d\mathbf{r} < 0 < \int_{C_3} \mathbf{F} \cdot d\mathbf{r} < \int_{C_4} \mathbf{F} \cdot d\mathbf{r}
\]

C_1 and C_2 have the opposite direction of the vector field with the vectors on C_2 having the greater magnitude. C_3 and C_4 have the same direction of the vector field with the vectors having a similar magnitude, but C_4 is longer.

Maple. See lineintegral(14.2).mw or lineintegral(14.2).pdf.
3. Independence of Path and Conservative Vector Fields

Definition.

1. A region \(D \subseteq \mathbb{R}^n \) (for \(n \geq 2 \)) is called \text{connected} if every pair of points in \(D \) can be connected by a piecewise-smooth curve lying entirely in \(D \).

\[
\text{connected} \quad \text{not connected}
\]

2. A \text{path} is a piecewise-smooth curve \(C \) traced out by the endpoint of the vector-valued function \(\mathbf{r}(t) \) for \(a \leq t \leq b \).

3. The line integral \(\int_C \mathbf{F} \cdot d\mathbf{r} \) is \text{independent of path} in the domain \(D \) if the integral is the same for every path contained in \(D \) that has the same beginning and end points.

Theorem. Suppose the vector field \(\mathbf{F}(x, y) = \langle M(x, y), N(x, y) \rangle \) is continuous on the open, connected region \(D \subseteq \mathbb{R}^2 \). Then the line integral

\[
\int_C \mathbf{F}(x, y) \cdot d\mathbf{r}
\]

is independent of path if and only if \(\mathbf{F} \) is conservative on \(D \).

Note. A similar result is valid in any number of dimensions.
THEOREM (Fundamental Theorem for Line Integrals).

Suppose \(\mathbf{F}(x, y) = \langle M(x, y), N(x, y) \rangle \) is continuous on the open, connected region \(D \subseteq \mathbb{R}^2 \) and \(C \) is any piecewise-smooth curve lying in \(D \), with initial point \((x_1, y_1)\) and terminal point \((x_2, y_2)\). Then, if \(\mathbf{F} \) is conservative on \(D \), with \(\mathbf{F}(x, y) = \nabla f(x, y) \),

\[
\int_C \mathbf{F}(x, y) \cdot d\mathbf{r} = f(x, y) \bigg|_{(x_2,y_2)}^{(x_1,y_1)} = f(x_2, y_2) - f(x_1, y_1).
\]

EXAMPLE. Compute \(\int_C \langle ye^{xy}, xe^{xy} \rangle \cdot d\mathbf{r} \) for the curve \(C \) shown below.

We need to find \(f(x, y) \) such that

\[
\nabla f = \langle f_x, f_y \rangle = \langle ye^{xy}, xe^{xy} \rangle.
\]

Assume \(f_x = ye^{xy} \). Then

\[
f(x, y) = \int ye^{xy} \, dx = e^{xy} + g(y) \implies f_y(x, y) = xe^{xy} + g'(y).
\]

Then \(\nabla f = \mathbf{F} \) if \(g(y) = C \) for some constant \(C \). Choose \(C = 0 \implies f(x, y) = e^{xy} \).

Then \(\mathbf{F} \) is conservative on \(\mathbb{R}^2 \), so

\[
\int_C \langle ye^{xy}, xe^{xy} \rangle \cdot d\mathbf{r} = e^{xy} \bigg|_{(3,1)}^{(-1,-1)} = e^3 - e.
\]
Definition. A curve C is closed if its two endpoints are the same. For C defined by $x = g(t), y = h(t), a \leq t \leq b$, this means $(g(a), h(a)) = (g(b), h(b))$.

Theorem. Suppose F is continuous on the open, connected region $D \subseteq \mathbb{R}^2$. Then F is conservative on D if and only if $\int_C F(x, y) \cdot dr = 0$ for every piecewise-smooth closed curve C lying in D.

Definition. A region D is simply-connected if every closed curve in D encloses only points in D.

Theorem. Suppose $M(x, y)$ and $N(x, y)$ have continuous first partial derivatives on a simply-connected region D. Then $\int_C M(x, y) \, dx + N(x, y) \, dy$ is independent of path in D if and only if $M_y(x, y) = N_x(x, y)$ for all (x, y) in D.

Example. $F(x, y) = \langle M(x, y), N(x, y) \rangle = \langle x - y, x - 2 \rangle$. $M_y = -1$ and $N_x = 1$. Thus

$$\int_C F(x, y) \cdot dr = \int_C (x - y) \, dx + (x - 2) \, dy$$

is not independent of path.
Theorem (Conservative Vector Fields). Suppose \(\mathbf{F}(x, y) = (M(x, y), N(x, y)) \) and \(M(x, y) \) and \(N(x, y) \) have continuous first partial derivatives on an open, simply-connected region \(D \subseteq \mathbb{R}^2 \). Then the following are equivalent:

1. \(\mathbf{F}(x, y) \) is conservative in \(D \).
2. \(\mathbf{F}(x, y) \) is a gradient field in \(D \), i.e., \(\mathbf{F}(x, y) = \nabla f(x, y) \) for some potential function \(f \) for all \((x, y) \) in \(D \).
3. \(\int_C \mathbf{F}(x, y) \cdot d\mathbf{r} \) is independent of path in \(D \).
4. \(\int_C \mathbf{F}(x, y) \cdot d\mathbf{r} = 0 \) for every piecewise-smooth closed curve \(C \) lying in \(D \).
5. \(M_y(x, y) = N_x(x, y) \) for all \((x, y) \) in \(D \).

Example. Are the following vector fields conservative?

\[
\begin{array}{c}
\text{F is constant } \implies M_y = N_x = 0 \implies \text{conservative.}
\end{array}
\]
For C a counter-clockwise circle centered at the origin, $\int_C \mathbf{F} \cdot d\mathbf{r} > 0 \implies$ not conservative.

No rotation $\implies M_y = N_x \implies$ conservative.

Theorem (Three Dimensions). Suppose the vector field $\mathbf{F}(x, y, z)$ is continuous on the open, connected region $D \subseteq \mathbb{R}^3$. Then $\int_C \mathbf{F}(x, y, z) \cdot d\mathbf{r}$ is independent of path in D if and only if \mathbf{F} is conservative in D, i.e., $\mathbf{F}(x, y, z) = \nabla f(x, y, z)$ for some scalar function f (a potential function for \mathbf{F}) for all (x, y, z) in D. Further, for any piecewise-smooth curve C lying in D with initial point (x_1, y_1, z_1) and terminal point (x_2, y_2, z_2),

$$\int_C \mathbf{F}(x, y, z) \cdot d\mathbf{r} = f(x, y, z) \bigg|_{(x_1, y_1, z_1)}^{(x_2, y_2, z_2)} = f(x_2, y_2, z_2) - f(x_1, y_1, z_1).$$
Example. Compute $\int_C \langle yz^2, xz^2, 2xyz \rangle \cdot dr$ for the curve C shown below.

We need to find $f(x, y, z)$ such that

$$\nabla f = \langle f_x, f_y, f_z \rangle = \langle yz^2, xz^2, 2xyz \rangle.$$

Assume

$$f_x = yz^2 \implies f(x, y, z) = \int yz^2 \, dx = xyz^2 + g(y, z).$$

Then

$$f_y = xz^2 + g_y(y, z) \implies g_y(y, z) = 0 \implies g(y, z) = h(z).$$

Thus

$$f(x, y, z) = xyz^2 + h(z) \implies f_z = 2xyz + h'(z) \implies h'(z) = 0 \implies h(z) = C.$$

Take $C = 0$. Then $f(x, y, z) = xyz^2$ and $\nabla f = \langle yz^2, xz^2, 2xyz \rangle = F$, so F is conservative on \mathbb{R}^3, and thus

$$\int_C \langle yz^2, xz^2, 2xyz \rangle \cdot dr = xyz^2 \bigg|_{(0,1,2)}^{(0,2,2)} = 0 - 0 = 0.$$
4. Green’s Theorem

Definition.

(1) A curve C is **simple** if it does not intersect itself, except at the endpoints.

(2) A simple closed curve C has **positive orientation** if the region R enclosed by C stays to the left of C as the curve is traversed; a simple closed curve C has **negative orientation** if the region R enclosed by C stays to the right of C as the curve is traversed.
Notation. \(\int_C F(x, y) \cdot dr \) denotes a line integral along a simple closed curve \(C \) oriented in the positive direction.

Theorem (Green’s Theorem). Let \(C \) be a piecewise-smooth simple closed curve in the plane with positive orientation and let \(R \) be the region enclosed by \(C \). Suppose \(M(x, y) \) and \(N(x, y) \) are continuous and have continuous first partial derivatives in some open region \(D \), with \(R \subset D \). Then

\[
\int_C M(x, y) \, dx + N(x, y) \, dy = \iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA.
\]

Example. Find \(\int_C (x^4 + 2y) \, dx + (5x + \sin y) \, dy \).

With \(C \) made up of 4 separate continuous curves (lines), direct calculation and parametrizing is cumbersome, so use Green’s Theorem.

\[
\int_C (x^4 + 2y) \, dx + (5x + \sin y) \, dy = \iint_R (5 - 2) \, dA = 3 \iint_R dA = 3(\text{area of } R) = 3(\sqrt{2})^2 = 3 \cdot 2 = 6
\]

by geometry.
Example. Find \(\int_{C} (x^2y) \, dx + (x^3 + 2xy^2) \, dy \).

Again, for simplicity, use Green’s Theorem.

\[
\int_{C} (x^2y) \, dx + (x^3 + 2xy^2) \, dy = \iint_{R} \left[(3x^2 + 2y^2) - x^2\right] \, dA = \int\int_{R} (2x^2 + 2y^2) \, dA = 2 \int\int_{R} (x^2 + y^2) \, dA = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{1}^{r^2} r^2 \, dr \, d\theta = 2 \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \left(4 - \frac{1}{4}\right) \, d\theta = \frac{15}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \, d\theta = \frac{15}{2} \theta \bigg|_{-\frac{\pi}{2}}^{\frac{\pi}{2}} = \frac{15}{2} \pi.
\]

Notation. We use \(\partial R \) to refer to the boundary of the region \(R \), oriented in the positive direction.

Note. We can replace \(C \) by \(\partial R \) in Green’s Theorem.
Example. Suppose \(C \) is a piecewise smooth, simple closed curve enclosing the region \(R \). Then

\[
(1) \quad \oint_C x \, dy = \iint_R (1 - 0) \, dA = \iint_R dA.
\]

\[
(2) \quad \oint_C (-y) \, dx = \iint_R [0 - (-1)] \, dA = \iint_R dA.
\]

Therefore,

\[
\text{Area of } R = \iint_R dA = \frac{1}{2} \oint_C x \, dy - y \, dx.
\]

Extending Green’s Theorem

Consider \(R \) as below:

Green’s Theorem doesn’t apply since \(R \) is not simply connected. But we make two horizontal slits in \(R \), dividing \(R \) into two simply-connected regions \(R_1 \) and \(R_2 \).

Apply Green’s Theorem to \(R_1 \) and \(R_2 \) separately:

\[
\iint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA = \iint_{R_1} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA + \iint_{R_2} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) \, dA =
\]

\[
\oint_{\partial R_1} M(x, y) \, dx + N(x, y) \, dy + \oint_{\partial R_2} M(x, y) \, dx + N(x, y) \, dy =
\]
\[
\int_{C_1} M(x, y) \, dx + N(x, y) \, dy + \int_{C_2} M(x, y) \, dx + N(x, y) \, dy = \\
\text{Since the line integrals over the slits cancel}
\int_{C} M(x, y) \, dx + N(x, y) \, dy
\]

where \(C = C_1 \cup C_2 \).

Note. This procedure can be extended to any finite number of holes.

Example. Suppose \(\mathbf{F}(x, y) = \left\langle \frac{-y}{x^2 + y^2}, \frac{x}{x^2 + y^2} \right\rangle \). Show that

\[
\int_{C} \mathbf{F}(x, y) \cdot d\mathbf{r} = 2\pi
\]

for every simple closed curve \(C \) enclosing the origin.

Solution. Green’s Theorem doesn’t apply since \(\mathbf{F}(0, 0) \) is not defined. Let \(C \) be any simple closed curve containing the origin and let \(C_1 \) be the circle of radius \(a > 0 \) centered at the origin, positively oriented, where \(a \) is sufficiently small so that \(C \) and \(C_1 \) do not meet. Let \(R \) be the region between and including the curves.

![Diagram of a region with a simple closed curve and a circle enclosing it.](image)
Applying the extended Green’s Theorem,

\[\oint_C \mathbf{F}(x, y) \cdot d\mathbf{r} - \oint_{C_1} \mathbf{F}(x, y) \cdot d\mathbf{r} = \oint_R \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dA = \]

\[\iint_R \left[\frac{(1)(x^2 + y^2) - x(2x)}{(x^2 + y^2)^2} - \frac{(-1)(x^2 + y^2) + y(2y)}{(x^2 + y^2)^2} \right] dA = \iint_R 0 \, dA = 0 \implies \]

\[\oint_C \mathbf{F}(x, y) \cdot d\mathbf{r} = \oint_{C_1} \mathbf{F}(x, y) \cdot d\mathbf{r}. \]

Parameterize \(C_1 \) by

\[x = a \cos t, \quad y = a \sin t, \quad 0 \leq t \leq 2\pi. \]

Then \(x^2 + y^2 = a^2 \), and

\[\oint_C \mathbf{F}(x, y) \cdot d\mathbf{r} = \oint_{C_1} \mathbf{F}(x, y) \cdot d\mathbf{r} = \oint_{C_1} \left\langle \frac{-y}{a^2}, \frac{x}{a^2} \right\rangle \cdot d\mathbf{r} = \]

\[\frac{1}{a^2} \oint_{C_1} (-y) \, dx + x \, dy = \frac{1}{a^2} \int_0^{2\pi} \left[(a \sin t)(-a \sin t) + (a \cos t)(a \cos t) \right] \, dt = \]

\[\int_0^{2\pi} \left(\sin^2 t + \cos^2 t \right) \, dt = \int_0^{2\pi} \, dt = t \bigg|_0^{2\pi} = 2\pi. \]

\(\square \)