
CHAPTER 3

Mathematical Mo dels and Numerical Metho ds In volving First-Order
Equations

2. Compartmen tal Analysis

The basic one-compartment system consists of a function x(t) that represents
the amount of a substance in the compartment at time t, an input rate at
which the substance enters the compartment, and an output rate at which the

substance leaves the compartment. Interpreting
dx
dt

as the rate of change in the

amount of the substance in the compartment at time t, we get

dx
dt

= input rate� output rate.
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Mixing Problems

Example (A one compartment system—orange juice problem). There are
50,000 gal of orange juice in a vat with 10% concentrate, the rest water. A
solution of 40% concentrate is sent to the vat at 100 gal/min. Similarly, 100
gal/min is drained from the vat, where there is constant mixing. We want to

(1) express the percentage of concentrate in the vat as a function of time and

(2) predict when the concentrate will reach 12%.

50,000 gal juice
10% concentrate

100 gal/min
40% concentrate

100 gal/min
?% concentrate

Let x(t) = the amount of concentrate in the vat.

Let c(t) = the percentage of concentrate in the vat.

Let V (t) = the volume of liquid in the vat.

c(t) =
x(t)
V (t)

and x(t) = c(t) · V (t).

(⇤) Assume good mixing so that the percentage of concentrate leaving the vat
is the same as that in the vat.

The rate of change of the amount of concentrate in the vat changes with time

and is given by
dx
dt

. Thus we can find x(t) as a solution to a DE modeling the

rate of change.

Note.

(1) amount of concentrate=(# of gal)⇤(percentage of concentrate/gal)

(2) # of gal flowing in or out=(rate of flow)⇤(time)
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We have, using (⇤),
inflow rate = (100 gal/min)(.40 gal conc./gal) = 40 gal conc./min

outlow rate = (100 gal/min)
⇣x(t) gal conc.

50000 gal

⌘
=

x(t)
500

gal conc./min

Thus the IVP modeling the process is

dx
dt

= 40� x(t)
500

, x(0) = 5000

dx
dt

+ .002x = 40, x(0) = 5000

µ = e.002t

e.002tx0 + .002e.002tx = 40e.002t =)
d
dt

h
e.002tx

i
= 40e.002t =)

e.002tx = 40

Z
e.002t dt + C =)

e.002tx = 40
⇣ 1

.002

⌘
e.002t + C =)

x(t) = 20000 + Ce�.002t

Now
x(0) = 20000 + C = 5000 =) C = �15000 =)

x(t) = 20000� 15000e�.002t =)
c(t) = .4� .3e�.002t

so
.12 = .4� .3e�.002t =)

t = 34.5 min.
Note that

lim
t!1

x(t) = 0.4.

Maple. See orangejuice.mw or orangejuice.pdf
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Problem. A 200 gal tank initially contains 50 gal salt water from dissolving
5 lb salt in 50 gal water. Salt water with concentration of .25 lb/gal of salt is
pumped into the tank at 6 gal/min. Salt water is pumped out at 4 gal/min.
Find a formula for the concentration of salt in the tank up to the point of
overflowing.

200 gal tank

50 gal
conc.=.1 lb/gal

6 gal/min

.25 lb/gal

4 gal/min

? lb/gal

Let

x(t)=lb of salt in tank,

V(t)=gal in tank,

c(t)=concentration of salt in tank in lb/gal

Thus

c(t) =
x(t)
V (t)

and x(t) = c(t)V (t).

inflow rate = (6 gal/min)(.25 lb/gal) = 1.5 lb/min

outlow rate = (4 gal/min)
⇣ x(t) lb

V (t) gal

⌘
=

4x(t)
V (t)

lb/min

Since V (t) = 50 + 2t, the model is

(⇤) dx
dt

= 1.5� 4x
50 + 2t

, s(0) = 5.

Alternately, since x(t) = c(t)(50 + 2t), we could also use

(#)
d
dt

h
(50 + 2t)c(t)

i
= 1.5� 4c(t) =)
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2c(t) + (50 + 2t)
dc
dt

= 1.5� 4c(t) =)

dc
dt

+
6c

50 + 2t
=

1.5
50 + 2t

, c(0) = .1

Solving (⇤),

x0 +
2x

25 + t
= 1.5, x(0) = 5

µ = e
R 2

25+t dt = e2
R dt

25+t = e2 ln|t+25| = eln(t+25)2 = (t + 25)2

(t + 25)2x0 + 2(t + 25)x = 1.5(t + 25)2 =)
d
dt

h
(t + 25)2x

i
= 1.5(t + 25)2 =)

(t + 25)2x = 1.5
Z

(t + 25)2 dt + C =)

(t + 25)2x = 1.5
(t + 25)3

3
+ C =)

x(t) =
t + 25

2
+

C
(t + 25)2

=
(t + 25)3 + 2C

2(t + 25)2
.

x(0) =
253 + 2C

2 · 252
= 5 =) 253 + 2C = 10 · 252 =)

2C = 10 · 252 � 253 = 252(10� 25) =) C = �9375

2
.

Then

x(t) =
(t + 25)3 � 9375

2(t + 25)2
and

c(t) =
(t + 25)3 � 9375

2(t + 25)2
· 1

2(t + 25)
=

(t + 25)3 � 9375

4(t + 25)3

Maple. See extraprob.mw or extraprob.pdf
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Radioactive Decay

Suppose �t is a su�ciently small time interval (i.e., as small as we need) and
P(�t) is the probability that a given nucleus will decay over any time period
of length �t.

We assume P(�t) /
approx

�t =) P(�t) ⇡ ! �t, ! > 0 and that P(�t) << 1

(P(�t) is much smaller than 1).

Also assume that lim
�t!0

P(�t)
�t

= ! .

Let N (t) = # of nuclei at time t.

Then the number of atoms decaying over a time period of �t beginning at time
t is

N (t)P(�t) ⇡ N (t) · ! · �t =)
N (t + �t) = N (t)� N (t)P(�t) ⇡ N (t)� N (t) · ! · �t =)

dN
dt

= lim
�t!0

N (t + �t)� N (t)
�t

= lim
�t!0

�N (t) · ! · �t
�t

=

lim
�t!0

⇥
� N (t) · !

⇤
= �!N (t)

Thus the model is
dN
dt

= �!N (t), N (0) = N0.

However, this model is flawed due to the discreteness of N(t), whose values are
integers, resulting in a discontinuous function.
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We switch to mass m(t) in grams, a continuous quantity. Then the model is
given by

dm
dt

= �!m (t), m(0) = m0

and is called the radioactive decay law. ! > 0 is the decay constant.

outflow rate=! m(t)

m(t)

Malthusian population model

We want to model the population p(t) at time t.

Assume a virtual lack of death over the observed time interval.

This is basically the same situation as radioactive decay, except there is growth
here. Instead of losing a nucleus, we gain a birth. Thus the model is

dp
dt

= bp, p(0) = po, b> 0

inflow rate=bp
p(t)

dp
dt

is the growth rate and
dp/dt

p
is the per capita growth rate.
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Now add in a death rate where d > 0 is the proportionality constant for the
death rate (death by natural causes).

birth rate death rate

bp dp

p(t)

Then, the Malthusian model is

dp
dt

= bp� dp = (b� d)p = kp, p(0) = p0,

where the per capita growth rate
dp/dt

p
= k is constant.

Example. In the 18th century, the population of the US doubled every 25
years. Use the Malthusian model to estimate the per capita rate of growth.

The Malthusian model is
dp
dt

= kp or
dp
dt
� kp = 0, p(0) = p0

µ = e�kt =) e�ktp0 � ke�ktp = 0 =)
d
dt

h
e�ktp

i
= 0 =) e�ktp = C =) p(t) = Cekt

Now p(0) = C = p0, so
(⇧) p(t) = p0ekt

is the solution for the Malthusian model. Then
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2p0 = p0e25k =)
2 = e25k =) 25k = ln 2 =)

k =
ln 2

25
= .0277

Then k = .0277 is the per capita growth rate.

Problem (Page 100 # 14). In 1980 the population of alligators on the
Kennedy Center Space grounds was was estimated to be 1500. In 2006 the
population had grown to an estimated 6000. Using the Mathusian model for
population growth, estimate the alligator population of the alligators on the
Kennedy Center Space grounds in the year 2020.

Solution.

Counting time from the year 1980 with p(t) = the population of the alligators,
we have p(0) = 1500. Then, from (⇧),

p(t) = 1500ekt.

For 2006, t = 26, and thus

p(26) = 1500ek(26) = 6000 =) ek(26) = 4 =) ek = 41/ 26 = 21/ 13.

Then, for 2020, t = 40, and so by the Malthusian model, there will be

p(40) = 1500ek(40) = 1500 · 240/ 13 ⇡ 12700

alligators on the Kennedy Center Space grounds ⇤
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Logistic Population Model

Now add in the death rate due to the rate of competition (e.g., limited resources,
disease, etc.). Then

dp
dt

= kp�
⇥
rate of competition].

This rate of competition is proportional to the number of possible 2-party in-
teractions

pC2 = Cp,2 =

✓
p
2

◆
=

p(p� 1)

2
.

Thus
dp
dt

= kp� k1
p(p� 1)

2
=

⇣
k +

k1

2

⌘
p� k1p2

2
,

and
dp
dt

= �Ap(p� p1), p(0) = p0

is the logistic model where A =
k1

2
and p1 =

2k
k1

+1. The equation is separable.

First,
dp
dt

= 0 =) �Ap(p� p1) = 0 =) p = 0 or p = p1.

Thus
p = 0 and p = p1

are the constant solutions.
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If Ap(p� p1) 6= 0,
Z

dp
p(p� p1)

= �A
Z

dt + c1 =) (using partial fractions)

�
Z 1

p1

p
dp+

Z 1
p1

p� p1
dp = �At + c1 =)

� 1

p1

Z
dp
p

+
1

p1

Z
dp

p� p1
dp = �At + c1 =)

� 1

p1
ln p +

1

p1
ln|p� p1| = �At + c1 =)

ln
|p� p1|

p
= �Ap1t + p1c1 =)

|p� p1|
p

= eAp1t+p1c1 = e�Ap1tep1c1 = c2e�Ap1t (c2 > 0) =)

p� p1

p
= Ce�Ap1t (C 6= 0)

Since p(0) = p0,
p0 � p1

p0
= C =)

p� p1

p
=

p0 � p1

p0eAp1t =)

p(p0 � p1) = p0(p� p1)e�Ap1t =)
pp0 � pp1 � pp0e�Ap1t = �p0p1eAp1t =)

p(t) =
p0p1

p0 + (p1 � p0)e�Ap1t .

Note: lim
t!1

p(t) = p1, the carrying capacity of the environment.
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We look at the graph of the function p(t) for two cases below. Note that p0 is
the p-intercept.

These two curves are called logistic curves

Maple. See logistic.mw or logistic.pdf
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4. Newtonian Mec hanics

Mechanics is the study of the motion of objects and the e↵ect of forces acting
on them. Newtonian, or classical mechanics deals with the motion of ordinary
objects — that is, objects that are large compared to an atom and slow-moving
compared with the speed of light. A model for Newtonian mechanics can be
based on Newton’s laws of motion:

(1) When a body is subjected to no resultant external force, it moves with
constant velocity.

(2) When a body is subjected to one or more external forces, the time rate
of change of the body’s momentum is equal to the vector sum of the
external forces acting on it.

(3) When one body interacts with a second body, the force of the first body
on the second is equal in magnitude, but in opposite direction, to the
force of the second body on the first.

We can express Newton’s second law by

dp
dt

= F (t, x, v)

where F (t, x, v) is the resultant force on the body at time t, location x, and
velocity v, and p(t) is the momentum of the body at time t. We have

p(t) = mv(t) =) m
dv
dt

= ma = F (t, x, v),

where a =
dv
dt

is the acceleration of the body at time t. With v =
dx
dt

, we have

a second order DE in x(t). For F independent of x, we have

(" ) m
dv
dt

= F (t, v),

a first order equation in v(t).
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Procedure for Newtonian Models

(1) Determine all relevant forces acting on the object being studied. It is helpful
to draw a simple diagram of the object that depicts these forces.

(2) Choose an appropriate axis or coordinate system in which to represent
the motion of the object and the forces acting on it. Keep in mind that this
coordinate system must be an inertial reference frame (a reference frame in
which an undisturbed body moves with a constant velocity).

(3) Apply Newton’s second law as expressed in equation (" ) to determine the
equations of motion for the object.

We have the following choices for units:
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Vertical motion with a velocity-dependent drag force

An object of mass m is given an initial downward velocity v0 and allowed to fall
under the influence of gravity. Assume the gravitational force is constant and
the force due to air resistance is proportional to the velocity of the object. We
use a vertical axis and let x(t) denote the distance fallen at time t. The force
due to gravity is F1 = mg where g is the acceleration due to gravity at the
Earth’s surface. The force due to air resistance isn F2 = �bv(t) where b> 0 is
the proportionality constant and the “�” sign is present since the air resistance
is opposite in direction to gravity. We have

F = F1 + F2 = mg� bv(t) =)

(#) m
dv
dt

= mg� bv, v(0) = v0

is the IVP for this model with m > 0 and b > 0. (#) is separable and first
order linear and can be solved to give

(##) v(t) =
mg
b

+
⇣

v0 �
mg
b

⌘
e�bt/m

Integrating v =
dx
dt

with respect to t, we get

x(t) =

Z
v(t) dt =

mg
b

t � m
b

⇣
v0 �

mg
b

⌘
e�bt/m + c.
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Since x(0) = 0, we have

0 = �m
b

⇣
v0 �

mg
b

⌘
+ c =) c =

m
b

⇣
v0 �

mg
b

⌘
,

and thus the equation of motion is

(###) x(t) =
mg
b

t +
m
b

⇣
v0 �

mg
b

⌘
(1� e�bt/m ).

We note at this time that

lim
t!1

v(t) =
mg
b

and lim
t!1

x(t) =
mg
b

t � m2g
b2

+
m
b

v0.

The value
mg
b

of the horizontal asymptote for v(t) is called the limiting or

terminal velocity of the object and is a constant solution of (#). Since the two
forces are in balance here, this is known as an equilibrium solution. Note also
that the terminal velocity is independent of the initial velocity.

We also have x(t) asymptotically approaching the line
mg
b

t � m2g
b2

+
m
b

v0.
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Problem (Page 115 # 10). An object of mass 2 kg is released from rest
from a platform 30 m above the water and allowed to fall under the influence
of gravity. After the object strikes the water, it begins to sink with gravity
pulling down and a bouyancy force pushing up. Assume that the force of grav-
ity is constant, no change of momentum occurs on impact with the water, the
bouyancy force is 1/ 2 the weight (weight = mg), and the force due to air re-
sistance or water resistance is proportional to the velocity, with proportionality
constant b1 = 10 N-sec/m in the air and b2 = 100 N-sec/m in the water. Find
the equation of motion of the object. What is the velocity of the object 1 min
after it is released?

Solution. We have motion equations for both air and water.

For motion in the air, let x1(t) be the distance from the object to the platform
and v1(t) = x0(t) its velocity at time t. We use (##) and (###) from above
with m = 2, b= b1 = 10, v0 = v1(0) = 0, and g = 9.81 to get

v(t) =
mg
b

+
⇣

v0 �
mg
b

⌘
e�bt/m = 1.962(1� e�5t) and

x(t) =
mg
b

t +
m
b

⇣
v0 �

mg
b

⌘
(1� e�bt/m ) = 1.962t � 0.392(1� e�5t).

Solving x1(t) = 1.962t � 0.392(1� e�5t) = 30 for t gives t ⇡ 15.5 sec for the
time the object hits the water. The velocity at this moment was

v1(15.5) = 1.962(1� e�5(15.5)) ⇡ 1.962.

For motion in the water, we reset t and let x2(t) be the distance passed by the
object from the water’s surface and by v2(t) it velocity at (reset) time t, we
have IC at the water’s surface of

v2(0) = 1.962, x2(0) = 0.

With the gravity force Fg = mg, the resistance force Fr = �100v, and the
bouyancy force Fb = �(1/ 2)mg, Newton’s second law gives (adding bouyancy
to (#))
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m
dv2

dt
= mg� 100v2 �

1

2
mg =

1

2
mg� 100v2 =)

(" )
dv2

dt
=

g
2
� 100

m
v2 = 4.905� 50v2.

Solving (" ) with the above IC,

v2(t) = 0.098 + Ce�50t ,

v2(0) = 0.098 + C = 1.962 =) C = 1.864 =)
v2(t) = 0.098 + 1.864e�50t =)

x2(t) =

Z t

0
v2(s) ds = 0.098t � 0.037e�50t + 0.037.

Taking into account the time shift made, the distance from the object to the
platform is

x(t) =

(
1.962t � 0.392(1� e�5t), t  15.5
0.098(t � 15.5)� 0.037e�50(t�15.5) + 30.037, t > 15.5

.

1 min after the object was released, it traveled in the water for 60�15.5 = 44.5
sec, so it had velocity

v2(44.5) = 0.098 + 1.864e�50(44.5) ⇡ 0.098 m/sec.

⇤

Resistive drag forces proportional to |v|r , r 6= 1.

The signum function, which we use here is defind by

sgn(x) =

8
><

>:

+1, if x > 0

0, if x = 0

�1, if x < 0

Note that for x 6= 0, sgn(x) =
x
|x| and indicates the sign of x. Your text uses

sign(x) for this function.
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Using Newton’s second law of motion, the DE that models vertical motion
of a body through a medium that exerts a drag force on the body that is
approximately proportional to a power r of its velocity is

m
dv
dt

= mg� b|v|r sgn(v)

Find a constant solution of this model if r = 2.
dv
dt

= 0 =) g� b
m

|v|2 sgn(v) = 0 =)

v2 sgn(v) =
mg
b

Thus sgn(v) = +1 =) v > 0, and so

v2 =
mg
b

=)

v =

r
mg
b

since the velocity is positive.

Maple. See quadratic drag.mw or quadratic drag.pdf.
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Problem (Page 116 # 22). A sailboat of mass 50 kg has been running (on
a straight course) under a light wind at 1 m/sec. Suddenly the wind picks up,
blowing hard enough to apply a constant force of 600 N to the sailboat. The
only other force acting on the boat is water resistance that is proportional to
the velocity of the boat. When the velocity of the sailboat reaches 5 m/sec,
the boat begins to rise out of the water and plane. When this happens, the
proportionality constant for the water resistance drops to b0 = 60 N-sec/m.
Find the equation of motion of the sailboat. What is the limiting velocity of
the sailboat under this wind as it is planing?

Solution. There are two opposing forces here: a constant horizontal force
due to the wind and an opposing force due to water resistance. All the motion
occurs on a horizontal axis. Set t = 0 at the point where the boat begins to
plane, and let x(t) and v(t) = x0(t) denote the distance traveled and velocity,
respectively, at time t. The forces due to the wind and water resitance are

Fw = 600 N and Fr = �60v N.

Applying Newton’s second law, we have

50
dv
dt

= 600� 60v

This gives us the IVP

dv
dt

=
6

5
(10� v), v(0) = 5.

This is a first order linear equation whose solution is

v(t) = 10 + Ce�6t/ 5.

Then

v(0) = 5 =) 10+C = 5 =) C = �5 =) v(t) = 10�5e�6t/ 5 =) lim
t!1

v(t) = 10.

Integrating v(t) with v(0) = 0 gives the following equation of motion:

x(t) =

Z t

0

�
10� 5e�6s/ 5� ds =

⇣
10s +

25

6
e�6s/ 5

⌘���
t

0
= 10t +

25

6
(e�6t/ 5 � 1).



4. NEWTONIAN MECHANICS 79

⇤


