
CHAPTER 1

Introduction

1. Background

Models of physical situations from Calculus

(1) Rate of change:

“A swimming pool is emptying at a constant rate of 90 gal/min.”

With V = volume in gallons and t = time in minutes,

dV

dt
= �90 =)

V = �90t + C

What is C?

C is the initial volume in the pool.

(2) Proportionality:

“The growth of a bacterial culture is proportional to the population present.”

With w = the weight in grams of a bacterial culture and t = time in days,

dw

dt
_ w =) dw

dt
= kw, k > 0 =)

1

w
dw = k dt =)

Z
1

w
dw =

Z
k dt + C1 =)

ln w = kt + C1 =) elnw = ekt+C1 =)
w = ekteC1 =) w = Cekt

where C > 0.

1
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(3) Newton’s 2nd Law of Motion:

A vector equation:

Fsum = ma =)

Fsum = m
dv

dt
=) Fsum = m

d2s

dt2
.

Note that |F| _ |a|.
+

-
For a freely falling object, F = ma = �mg where a = �g < 0. So, using h
for height instead of s for position,

dv

dt
=

d2h

dt2
= �g =)

Z
d2h

dt2
dt =

Z
(�g) dt + v0| {z }

always add constant at point of integration

=)

v =
dh

dt
= �gt + v0 =)Z

dh

dt
dt =

Z
(�gt + v0) dt + s0 =)

h = �gt2

2
+ v0t + s0

where the constants v0 and s0 are the initial veclocity and position of the body,
respectively.

Definition. A di↵erential equation is an equation that involves one or more
derivatives of some unknown function or functions.
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Definition. An ordinary di↵erential equation (ODE) is an equation that
involves a single independent variable, one or more variables that depend only
on the independent variable, and ordinary derivatives of one or more of these
dependent variables.

Definition. A patial di↵erential equation (PDE) is an equation that in-
volves two or more independent variables, one or more variables that depend
only on the independent variables, and partial derivatives of one or more of
these dependent variables.

Definition. The order of an ODE is said to be n if the order of the highest
derivative appearing in the equation is n.

Definition. A parameter is a quantity that does not change as the in-
dependent variable changes (for example, k and m in the preceding models).
However, they may change as a situation changes or di↵erent equipment is used
in an experiment (for instance, using objects of varying mass).

Definition. An ordinary di↵erential equation is called a linear di↵erential
equation if it has the format

an(x)
dny

dxn
+ an�1(x)

dn�1y

dxn�1
+ · · · + a1(x)

dy

dx
+ a0(x)y = F (x),

where an(x), an�1(x), . . . , a0(x), and F (x) depend only on the independent
variable x.

Example.

(1) 3x
d2y

dx2
+ sin x

dy

dx
+ (cos x)y = x2 sin x

is linear.

(2) y
dy

dx
+ (sin x)y3 +

3

y2
= ex + 1

is not linear
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2. Solutions and Initial Value Problems

Definition. An nth-order ordinary di↵erential equation is an equality re-
lating the independent variable to the nth deriviative (and usually lower order
derivatives as well) of the dependent variable.

Example.
d3y

dx3
+ x3d

2y

dx2
+ x2dy

dx
+ y = x2

is a third-order ODE with independent variable x and dependent variable y.

Thus a general form for an nth-order ODE can be expressed as

(⇤) F
⇣
x, y,

dy

dx
, . . . ,

dny

dxn

⌘
= 0

where F is a function that depends on x, y,
dy

dx
, . . . ,

dny

dxn
. We assume the

equation holds for all x in an open interval I (a < x < b, where a and/or b
could be infinite. We can also isolate the highest order derivative and write the
equation as

(⇤⇤) dny

dxn
= f

⇣
x, y,

dy

dx
, . . . ,

dn�1y

dxn�1

⌘
.

Definition (1 — Explicit Solution). A function y = �(x) (or just y(x))
that when substituted for y in equation (⇤) or (⇤⇤) satisfies the equation for all
x in the interval I is called an explicit solution to the equation on I .

Example.

(1) Is y =
1

25
e3x an explicit solution of

d2y

dx2
+ 16y = e3x?

Solution.
dy

dx
=

3

25
e3x,

d2y

dx2
=

9

25
e3x.

d2y

dx2
+ 16y =

9

25
e3x +

16

25
e3x = e3x.

Thus y is an explicit solution of the equation. ⇤
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(2) Is y = e2x an explicit solution of 2
d2y

dx2
� 7

dy

dx
+ 3y = 0?

Solution.
dy

dx
= 2e2x,

d2y

dx2
= 4e2x.

2
d2y

dx2
� 7

dy

dx
+ 3y = 8e2x � 14e2x + 3e2x = �3e2x 6= 0.

Thus y is not an explicit solution of the equation. ⇤

(3) For t > 0, is x = t tan(ln t) an explicit solution of
dx

dt
=

t2 + tx + x2

t2
?

Solution.
dx

dt
= tan(ln t) + t sec2(ln t) · 1

t
= tan(ln t) + sec2(ln t)

and
t2 + tx + x2

t2
= 1+

1

t
x+

1

t2
x2 = 1+tan(ln t)+tan2(ln t) = tan(ln t)+sec2(ln t).

Since both sides evaluate to the same expression, x is an explicit solution of the
equation. ⇤

Example. Assuming x2 + y2 = 4 implicitly defines y as a function of x,

does it implicity define one or more solutions to the equation
dy

dx
= �x

y
?

Solution. Di↵erentiating x2 + y2 = 4 implicitly,

2x + 2y
dy

dx
= 0 =) 2y

dy

dx
= �2x =) dy

dx
= �x

y
.

Thus x2 + y2 = 4 defines one or more solutions to the equation
dy

dx
= �x

y
.

In fact, y = ±
p

4� x2 are two explict solutions. ⇤
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Definition (2 — Implicit Solution). A relation G(x, y) = 0 is said to be
an implicit solution to equations (⇤) and (⇤⇤) on the interval I if it defines one
or more explicit Solutions on I .

Example. Show that for every constant C the relation 4x2� y2 = C is an

implcit solution the DE y
dy

dx
� 4x = 0. The solution curves for C = 0,±1,±4

(a one-parameter family of solutions) is shown below.

The curves are hyperbolas with common asymptotes y = ±2x. For C = 0,
y = ±2x are explicit solutions.

Solution.

Implicitly di↵erentiating 4x2 � y2 = C with respect to x, we get

8x� 2y
dy

dx
= 0 =) y

dy

dx
� 4x = 0.

Thus 4x2 � y2 = C is an implicit solution to the DE. ⇤
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Problem (Page 14 #16). Verify that x2 + cy2 = 1, where c is an arbitrary
nonzero constant, is a one-parameter family of solutions to

dy

dx
=

xy

x2 � 1
and graph several solution curves using the same coordinate axes.

Solution. Di↵erentiating x2 + cy2 = 1 implicitly with respect to x,

2x + 2cy
dy

dx
= 0 =) dy

dx
= � x

cy
= � xy

cy2
= � xy

1� x2
=) dy

dx
=

xy

x2 � 1
.

Solution curves for c = 1, 4, 9:

⇤
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Definition (3 — Initial Value Problem). By an initial value problem for
an nth-order DE

F
⇣
x, y,

dy

dx
, . . . ,

dny

dxn

⌘
= 0,

we mean: Find a solution to the DE on an interval I that satisfies at x0 the n
initial conditions

y(x0) = y0,

dy

dx
(x0) = y1,

...

dn�1y

dxn�1
(x0) = yn�1,

where x0 2 I and y0, y1, . . . , yn�1 are given constants.
Note.

(1) For a first-order equation, the initial condition (IC) is simply

y(x0) = y0.

(2) For a second-order equation, the IC are

y(x0) = y0,
dy

dx
(x0) = y1.

(3) In mechanics, where t, representing time, is the independent variable instead
of x, and y represents position, if t0 is the starting time, y(t0) = y0 is the initial
position of an object and y0(t0) = y1 is its initial velocity.
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Problem (Page 14 #22a). Verify that the function �(x) = c1ex + c2e�2x

is a solution to the linear DE
d2y

dx2
+

dy

dx
� 2y = 0

for any choice of the constants c1 and c2. Determine c1 and c2 so that the
following IC are satisfied:

y(0) = 2, y0(0) = 1.

Solution. For y = c1ex + c2e�2x,

dy

dx
= c1e

x � 2c2e
�2x and

d2y

dx2
= c1e

x + 4c2e
�2x,

so

d2y

dx2
+

dy

dx
� 2y =

c1e
x + 4c2e

�2x + c1e
x � 2c2e

�2x � 2(c1e
x + c2e

�2x) = 0

and thus �(x) is a solution to the DE. From the initial conditions,

(⇤) y(0) = c1 + c2 = 2

(⇤⇤) y0(0) = c1 � 2c2 = 1.

Subtracting (⇤⇤) from (⇤), we get 3c2 = 1 =) c2 =
1

3
=) c1 =

5

3
. ⇤

For the next important theorem, we need to introduce the topic of partial deriva-
tives. But first, we look at a Maple worksheet regarding graphs of functions of
two variables.

Maple. See function 2 variable.mw or function 2 variable.pdf
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Partial Derivatives

First-order partial derivatives: Consider a function f(x, y) defined on a region
R 2 R2. Let (a, b) be an interior point of R. The average rate of change as
you move horizontally from (a, b) to (a + h, b) is

f(a + h, b)� f(a, b)

h
.

The instantaneous rate of change in the x-direction at (a, b) is

@f

@x
(a, b) = lim

h!0

f(a + h, b)� f(a, b)

h
,

the partial derivative of f with respect to x.
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The average rate of change as you move vertically from (a, b) to (a, b + h) is

f(a, b + h)� f(a, b)

h
.

The instantaneous rate of change in the y-direction at (a, b) is

@f

@y
(a, b) = lim

h!0

f(a, b + h)� f(a, b)

h
,

the partial derivative of f with respect to y.

Example. Let f(x, y) = x2y2.

@f

@x
(x, y) = lim

h!0

f(x + h, y)� f(x, y)

h
= lim

h!0

(x + h)2y2 � x2y2

h

= lim
h!0

x2y2 + 2xhy2 + h2y2 � x2y2

h
= lim

h!0

2xhy2 + h2y2

h
= lim

h!0
(2xy2 + hy2) = 2xy2.

Basically, hold y constant and take the derivative with respect to x. We do

similarly for
@f

@y
(x, y). Then, for example,

@f

@x
(3, 2) = 2 · 3 · 22 = 24.
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Notation.
@f

@x
(x, y)| {z }

traditional notation

= fx(x, y)| {z }
modern notation

=
@

@x

⇥
f(x, y)

⇤
| {z }

partial di↵erential operatorz }| {
@f

@y
(x, y) =

z }| {
fy(x, y) =

z }| {
@

@y

⇥
f(x, y)

⇤
Example.

@

@x
(xe

p
xy) =

@

@x
(xe(xy)1/2) = e(xy)1/2 + xe(xy)1/2

⇣1

2

⌘
(xy)�1/2(y) =⇣1

2

⌘
e
p

xy(2 +
p

xy).

Note.
x �!

y
xy
k
z

�!
1
2z
�1/2

(xy)1/2

k
z1/2

k
s

�!
es

e(xy)1/2

k

ez1/2

k
es

Example. f(x, y) = x ln(y cos x). Find
@f

@x

⇣⇡

3
, 1
⌘
.

@f

@x
(x, y) = ln(y cos x) + x

1

y cos x
(�y sin x) = ln(y cos x)� x tan x

Note.
x �!
� sin x

cos x
k
s

�!
y

y cos x
k
ys
k
z

�!
1
z

ln(y cos x)
k

ln(ys)
k

ln z

Thus
@f

@x

⇣⇡

3
, 1
⌘

= ln
1

2
� ⇡

3

p
3 = �

⇣
ln 2 +

⇡p
3

⌘
.
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Maple. See partderiv.mw or partderiv.pdf

Given an initial value problem (IVP), we certainly hope there is a solution and,
furthermore, that there is only one solution. The following theorem gives us
conditions that guarantee this.

Theorem (1 – Existence and Uniqueness of Solution). Consider the IVP

dy

dx
= f(x, y), y(x0) = y0.

If f and
@f

@y
are continuous functions in some rectangle

R =
�
(x, y) : a < x < b, c < y < d

 
that contains the point (x0, y0), then the IVP has a unique solution y = �(x)
in some interval x0 � � < x < x0 + �, where � is a positive number.
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Problem (Page 14 # 26). Does Theorem 1 imply that

dx

dt
+ cos x = sin t, x(⇡) = 0

has a unique solution.
Solution.

Changing the equation to
dx

dt
= sin t� cos x giving

f(t, x) = sin t� cos x =) @f

@x
= sin x

and both these functions are continuous for all t and x, by Theorem 1 the above
IVP does have a unique solution for all t. ⇤

Problem (Page 14 # 28). Does Theorem 1 imply that

dy

dx
= 3x� 3

p
y � 1, y(2) = 1

has a unique solution.
Solution.

We have
f(x, y) = 3x� (y � 1)1/3 =)

@f

@y
= �1

3
(y � 1)�2/3 = � 1

3
p

(y � 1)2
.

Since
@f

@y
is undefined at the point (2, 1), it cannot be continuous in any rec-

tangle containing that point, so Theorem 1 does not guarantee a unique solu-
tion. ⇤

Note. In cases where Theorem 1 does not guarantee a unique solution, there
still may be one or more solutions.
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3. Direction Fields

Maple. See direction fields.mw or direction fields.pdf

4. The Approximation Method of Euler

Maple. See euler example.mw or euler example.pdf.

Euler’s method finds a polygonal path to approximate the solution of an IVP

dy

dx
= f(x, y), y(x0) = y0

by computing a sequence of points that are then joined by lines as follows:

(1) First decide on a suitable step size h. If we wish a solution for x0  x  b

with N steps, we let h =
b� x0

N
.

(2) Start at (x0, y0).

(3) Repeat the following algorithm until a desired stopping point on the x-axis
is reached:

Determine (xn+1, yn+1) from (xn, yn) by calculating

(a) the slope f(xn, yn) from
dy

dx
= f(x, y)

(b) and then the coordinates from the iteration formulas

xn+1 = xn + h

yn+1 = yn + hf(xn, yn)
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Example.
dy

dx
= x� y, y(0) = 0, 0  x  .5, five steps

Solution

h =
.5� 0

5
=

.5

5
= .1 and yn+1 = yn + .1(xn � yn)

x0 = 0

y0 = 0

——————————————–(0, 0)

x1 = 0 + .1 = .1

y1 = 0 + .1(0� 0) = 0

——————————————–(.1, 0)

x2 = .1 + .1 = .2

y2 = 0 + .1(.1� 0) = .01

——————————————–(.2, .01)

x3 = .2 + .1 = .3

y3 = .01 + .1(.2� .01) = .029

——————————————–(.3, .029)

x4 = .3 + .1 = .4

y4 = .029 + .1(.3� .029) = .0561

——————————————–(.4, .0561)

x5 = .4 + .1 = .5

y5 = .0561 + .1(.4� .0561) = .09049

——————————————–(.5, .09049)

Maple. See euler-maple.mw or euler-maple.pdf.


