CHAPTER 9

Simple Linear Regression and Correlation

Regression – used to predict or estimate the value of one variable corresponding to a given value of another variable.

X = independent variable.

Y = dependent variable.

Assumptions for Simple Linear Regression of Y on X:

1. Values of X are fixed (preselected).
2. X is measured with negligible error.
(3) For each X, there is a subpopulation of Y values that is normal. However, estimates of coefficients and their standard errors are robust to nonnormal distributions.

(4) Variances of subpopulations of each Y are all equal.

(5) **Assumption of Linearity** – the means of the subpopulations of Y lie on a line,

$$
\mu_{y|x} = \beta_0 + \beta_1 x,
$$

where $\mu_{y|x}$ is the mean of the subpopulation of Y for a given value x of X, and β_0 and β_1 are the *population regression coefficients*.

(6) Y values are statistically independent.

One can remember **LINE** for the primary assumptions.

Regression Model:

$$
y = \beta_0 + \beta_1 x + \epsilon
$$

$$
\implies \epsilon = y - (\beta_0 + \beta_1 x)
$$

$$
\epsilon = y - \mu_{y|x}
$$

Thus ϵ is the amount by which y differs from the mean of the given subpopulation.

Regression Analysis – Four step sample regression equation process:

Problem (9.3.2).

(1) Are the assumptions met?

(2) Obtain sample regression equation on the TI:
 (a) Enter the data (in lists x, y)
(b) Create a scatter diagram: Set a window \([-0.25 \times 0.25]\); Turn on a plot: \((\text{Diamond}>Y=>\text{Plot 1}>\text{Enter})\); Then fill in the table as in the diagram on the left below; Make sure all the graphs are cleared;

(c) Obtain the least squares regression line (where the squares of the errors are minimized). Go back to the **Stats/List Editor**;

Press (**F4**:Calc>3:Regressions> 1:LinReg \((a+bx)\)) and fill in the table that opens as in the diagram on the right below.

![Diagram of scatter plot and regression line]

Our regression equation is

\[
\hat{y} = 1.2112 + 1.0823x.
\]

\(\hat{y}\) means computed from the regression equation, not observed. View the line with the points (\text{Diamond}>\text{Graph}).

![Graph showing regression line and points]
(3) Evaluate the strength of the relationship between x and y and the usefulness of the regression equation for predicting and estimating.

$$r = .9119 \implies r^2 = .8316.$$

r^2 is called the coefficient of determination and gives the fraction of variation in the values of y that is explained by regression on x. Thus we have a good relationship here.

(4) Use the equation to predict and estimate. We have (18, 18) and (18, 23) as data pairs. What is the approximation to the mean of Y for $X = 18$? With the graph still showing, press $\text{F5:Math}>1:Value$. Then put in 18 for x_c and press \textbf{Enter} to get $\hat{y} = 20.6925$.

NOTE. We have a $\underline{\text{direct}}$ as opposed to an $\underline{\text{inverse}}$ relationship here.

EXAMPLE (9.3.1). This is fully described on pages 23-26 of the SPSS manual. The data file is *example 9.3.1.sav*.

Evaluating the Regression Equation

$H_0 : \beta_1 = 0$ not rejected means there is no evidence of a linear relationship – see the scatterplots on page 428.

$H_0 : \beta_1 = 0$ rejected means there is evidence of a linear relationship – see the scatterplots on page 429.
Testing $H_0: \beta_1 = 0$ with the F Statistic

EXAMPLE (9.3.1) – continued

For each i and corresponding x_i,

$$\left(y_i - \bar{y} \right) = \left(\hat{y} - \bar{y} \right) + \left(y_i - \hat{y} \right),$$

total deviation explained deviation unexplained deviation

$$y_i = \hat{y} + (y_i - \hat{y}),$$
data fit residual

and

$$\sum (y_i - \bar{y})^2 = \sum (\hat{y} - \bar{y})^2 + \sum (y_i - \hat{y})^2.$$

This is
\[\text{SST} = \text{total sum of squares} \]

\[\text{SSR} + \text{SSE} = \text{sum of squares due to regression} \quad \text{residual sum of squares} \]

\[r^2 = \frac{\text{SSR}}{\text{SST}} = \text{fraction of variation in } y \text{ explained by regression on } x. \]

Testing

\[H_0 : \beta_1 = 0 \quad H_A : \beta_1 \neq 0 \]

with \(F \):

\[
F = V.R. = \frac{\text{MSR}}{\text{MSE}}.
\]

The critical value for \(F \) is \(F_{1, n-2}^{1-\alpha} \). For our example it is

\[
F_{1.107}^{.95} = 3.93
\]

We have \(F = 217.279 \), which is greater than the critical value of 3.93, and \(p = \text{Sig.} = .000 \), which for SPSS means \(p < .001 \), we reject \(H_0 \).
Testing $H_0 : \beta_1 = 0$ with the t Statistic

We assume $\hat{\beta}_1$ is an unbiased point estimator for β_1 and $(\beta_1)_0$ is the hypothesized value for β_1. If $\sigma_{y|x}^2$ is known, we can use

$$z = \frac{\hat{\beta}_1 - (\beta_1)_0}{\sigma_{\hat{\beta}_1}}.$$

Most often $(\beta_1)_0 = 0$. If $\sigma_{y|x}^2$ is unknown, the usual case, the test statistic is

$$t = \frac{\hat{\beta}_1 - (\beta_1)_0}{s_{\hat{\beta}_1}}$$

where $s_{\hat{\beta}_1}$ is an estimate of $\sigma_{\hat{\beta}_1}$. The critical value of t for this example is

$$t^{n-2}_{1-\alpha/2} = t^{107}_{.975} = 1.982$$

<table>
<thead>
<tr>
<th>Coefficients³</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Model</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Constant)</td>
</tr>
<tr>
<td>Unstandardized Coefficients</td>
<td>B</td>
<td>-215.981</td>
</tr>
<tr>
<td>Std. Error</td>
<td></td>
<td>21.796</td>
</tr>
<tr>
<td>Standardized Coefficients</td>
<td>Beta</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
<td>-9.909</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>.000</td>
</tr>
<tr>
<td>95% Confidence Interval for B</td>
<td>Lower Bound</td>
<td>-259.190</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Upper Bound</td>
</tr>
</tbody>
</table>

a. Dependent Variable: y

Since $t = 14.70$ with $p = \text{Sig.} = .000$, we conclude $p < .001$. Thus we reject H_0. Recalling that the point estimate for β_1 is 3.459, we also see that a 95% CI for β_1 is (2.994, 3.924). Note that 0 is not in the CI, which is again sufficient evidence to reject H_0.
Estimating the Population Coefficient of Determination

In general, \(r^2 > \rho^2 \), the population coefficient of determination. Thus, \(r^2 \) is a biased estimator of \(\rho^2 \).

An unbiased estimator of \(\rho^2 \) is

\[
\tilde{r}^2 = 1 - \frac{SSE}{SST} \cdot \frac{n - 1}{n - 2},
\]

called the adjusted \(r^2 \).

\[
\tilde{r}^2 \to r^2 \text{ as } n \to \infty
\]

since

\[
\frac{n - 1}{n - 2} \to 1 \text{ and } 1 - \frac{SSE}{SST} = \frac{SST - SSE}{SST} = \frac{SSR}{SST} = r^2.
\]

Problem (9.3.2).

\[
r = .9119 \implies r^2 = .8316 \implies r^2 = 1 - .1684.
\]

Since \(n = 10 \),

\[
\tilde{r}^2 = 1 - .1684 \left(\frac{9}{8} \right) = .8105.
\]

Using the Regression Equation

We assume \(\alpha = .05 \).

Estimating the Mean of \(Y \) for a Given value of \(X \).

For each \(x \) we have a point estimate

\[
\hat{y} = \beta_0 + \beta_1 x.
\]

In the graph that follows at the top of the next page, the horizontal line shows the mean of the \(y \)-values, 101.894. We see that the scatter about the regression line is much less than the scatter about the mean line, which is as it should be when the null hypothesis \(\beta_1 = 0 \) has been rejected. The bands about the regression line give the 95\% confidence interval for the mean values \(\mu_{y|x} \) for each \(x \), or from another point of view, the probability is .95 that the population regression line \(\mu_{y|x} = \beta_0 + \beta_1 x \) lies within these bands.
In general, the $100(1 - \alpha)\%$ CI for $\mu_y|x$ when $\sigma^2_{y|x}$ is unknown is

$$\hat{y} \pm t^{n-2}_{(1-\alpha/2)} s_{y|x} \sqrt{\frac{1}{n} + \frac{(x_p - \bar{x})^2}{\sum(x_i - \bar{x})^2}}$$

where x_p is the particular value of x at which we wish to obtain a prediction interval for Y.

Predicting Y for a given X.

$$\hat{y} = \beta_0 + \beta_1 x$$

is again the point estimate. The outer bands on the graph at the top of the next page give the 95% confidence interval for y for each value of x.
In general, the $100(1 - \alpha)\%$ CI for y when $\sigma_{y|x}^2$ is unknown is

$$\hat{y} \pm t^{n-2}_{(1-\alpha/2)} s_{y|x} \sqrt{1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{\sum(x_i - \bar{x})^2}}.$$

The confidence bands in the scatter plots relate to the four new columns in our data window, a portion of which is shown at the top of the next page. We interpret the first row of data. For $x=74.5$, the 95% confidence interval for the mean value $\mu_{y|74.5}$ is $(32.41572, 52.72078)$, corresponding to the limits of the inner bands at $x=74.5$ in the scatter plot, and the 95% confidence interval for the individual value $y(74.5)$ is $(-23.7607, 108.8972)$, corresponding to the limits of the outer bands at $x = 74.5$. The first pair of acronyms lmci and umci stand for lower mean confidence interval and upper mean confidence interval, respectively, with the i in the second pair standing for individual.
9. SIMPLE LINEAR REGRESSION AND CORRELATION

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>LMCI_1</th>
<th>UMCI_1</th>
<th>LICI_1</th>
<th>UICI_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>74.75</td>
<td>25.72</td>
<td>32.41572</td>
<td>52.72078</td>
<td>-23.7607</td>
<td>108.8972</td>
</tr>
<tr>
<td>2</td>
<td>72.60</td>
<td>25.89</td>
<td>24.17575</td>
<td>46.08766</td>
<td>-31.3250</td>
<td>101.5884</td>
</tr>
<tr>
<td>3</td>
<td>81.80</td>
<td>42.60</td>
<td>59.11112</td>
<td>74.79530</td>
<td>.93840</td>
<td>132.9680</td>
</tr>
<tr>
<td>4</td>
<td>83.95</td>
<td>42.80</td>
<td>67.10283</td>
<td>81.67669</td>
<td>8.43859</td>
<td>140.3409</td>
</tr>
</tbody>
</table>

The Correlation Model

Both X and Y are now random variables, and both are measured from random “units of association” (the element from which the two measurements are taken).

Example. Choose 15 CBU students at random and measure their height X and weight Y.

Each variable is on equal footing here, and we measure the strength of the relationship. We can also do regression of Y on X or regression of X on Y.

Correlation Assumptions:

1. For each value of X, there is a normally distributed population of Y values.
2. For each value of Y, there is a normally distributed population of X values.
3. The joint distribution of X and Y is a normal distribution called the *bi-variate normal distribution*.
4. The subpopulations of Y values all have the same variance.
5. The subpopulations of X values all have the same variance.

The Correlation Coefficient

ρ (for population) measures the strength of the linear relationship between X and Y.

$\rho = \pm \sqrt{\rho^2}$, the previously discussed coefficient of determination.

$-1 \leq \rho \leq 1$
\[\rho = 1 \] means perfect *direct correlation* \((\beta_1 > 0)\).

\[\rho = -1 \] means perfect *inverse correlation* \((\beta_1 < 0)\).

\[\rho = 0 \] means that the variables are not linearly correlated \((\beta_1 = 0 \text{ for regression})\).

We approximate \(\rho \) with \(r \), the sample correlation coefficient.

\[r = \pm \sqrt{r^2} \], the sample coefficient of determination (the sign of \(r \) is the same as the sign of \(\beta_1 \)).

Our interest is that \(\rho \neq 0 \), i.e., that

\[H_0 : \rho = 0 \quad H_A : \rho \neq 0 \]

has \(H_0 \) rejected.

SPSS indicates significance at the \(\alpha = .05 \) and \(\alpha = .01 \) levels of significance. Choose one-sided if the direction of relationship is known (direct or inverse), two-sided otherwise.

Problem (9.7.3). – using SPSS.

We view the scatterplot.
Since it is clear we have an inverse relationship here, we do a one-sided test of significance at the $\alpha = .05$ level.

$$H_0 : \rho \geq 0 \quad H_A : \rho < 0$$

![Correlations Table]

*Correlation is significant at the 0.05 level (1-tailed).

We have $\rho \approx r = -.812$ and we have $p = .013$. Thus the correlation is marked as significant at the $\alpha = .05$ level, but not at the $\alpha = .01$ level. We reject H_0.

Precautions – read through these clearly on pages 459-60 of the text.